Uneingeschränkter Zugang

Biological evaluation of selective laser melted magnesium alloy powder

, ,  und   
10. März 2021

Zitieren
COVER HERUNTERLADEN

Avvari M.S.N., Able M., Microstructure evolution in AZ61 alloy processed by equal channel angular pressing, Adv. Mech. Eng., 2016, 8, 168781401665182, DOI: 10.1177/1687814016651820. Search in Google Scholar

Bjarnsholt T., Biofilm Infections, Springer Science, 2011. Search in Google Scholar

Bodnárová S., Gromošová S., Hudák R., Rosocha J., Živčák J., Plšíková J., Vojtko M., Tóth T., Harvanová D., Ižariková G., Danišovič Ľ., 3D-printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study, Acta Bioeng. Biomech., 2020, 21, DOI: 10.37190/abb-01407-2019-02. Search in Google Scholar

Cao P., Li W.W., Morris A.R., Horrocks P.D., Yuan C.Q., Yang Y., Investigation of the antibiofilm capacity of peptidemodified stainless steel, R. Soc. Open Sci., 2018, 5, DOI: 10.1098/rsos.172165. Search in Google Scholar

Castellani C., Lindtner R.A., Hausbrandt P., Tschegg E., Stanzl-Tschegg S.E., Zanoni G., Beck S., Weinberg A.M., Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater., 2011, 7, 432–440, DOI: 10.1016/j.actbio.2010.08.020. Search in Google Scholar

Cheng P., Zhao C., Han P., Ni J., Zhang S., Zhang X., Chai Y., Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits, J. Mater. Sci. Technol., 2016, 32, 883–888, DOI: 10.1016/j.jmst.2016.03.012. Search in Google Scholar

Chou D.T., Hong D., Saha P., Ferrero J., Lee B., Tan Z., Dong Z., Kumta P.N., In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials, Acta Biomater., 2013, 9, 8518–8533, DOI: 10.1016/j.actbio.2013.06.025. Search in Google Scholar

Culmone C., Smit G., Breedveld P., Additive manufacturing of medical instruments: A state-of-the-art review, Addit Manuf., 2019, 27, 461–473, DOI: 10.1016/j.addma.2019.03.015. Search in Google Scholar

Dziadoń A., Mola R., Magnesium – trends of development of mechanical properties, Inżynieria Mater w obróbce Plast XXIV, 2013, 253–277. Search in Google Scholar

Galli S., Stocchero M., Andersson M., Karlsson J., He W., Lilin T., Wennerberg A., Jimbo R., The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation, Osteoporos. Int., 2017, 28, 2195–2205, DOI: 10.1007/s00198-017-4004-5. Search in Google Scholar

Gieseke M., Nölke C., Kaierle S., Maier H.J., Haferkamp H., Selective Laser Melting of Magnesium Alloys for Manufacturing Individual Implants, Fraunhofer Direct Digital Manufacturing Conference, 2014, 1–6. Search in Google Scholar

Gruber K., Mackiewicz A., Stopyra W., Dziedzic R., Kurzynowski T., Development of manufacturing method of the MAP21 magnesium alloy prepared by selective laser melting (SLM), Acta Bioeng. Biomech., 2019, 21, 157–168, DOI: 10.5277/ABB-01472-2019-04. Search in Google Scholar

Gu X., Zheng Y., Cheng Y., Zhong S., Xi T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 2009, 30, 484–498, DOI: 10.1016/j.biomaterials.2008.10.021. Search in Google Scholar

Gu X., Zhou W.R., Zheng Y.F., Cheng Y., Wei S.C., Zhong S.P., Xi T.F., Chen L.J., Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – in simulated body fluid, Acta Biomater., 2010, 6, 4605–4613, DOI: 10.1016/j.actbio.2010.07.026. Search in Google Scholar

Gugala N., Lemire J.A., Turner R.J., The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains, J. Antibiot. (Tokyo), 2017, 70, 775–780, DOI: 10.1038/ja.2017.10. Search in Google Scholar

Hadzima B., Mhaede M., Pastorek F., Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9% NaCl solution, J. Mater Sci. Mater Med., 2014, 25, 1227–1237, DOI: 10.1007/s10856-014-5161-0. Search in Google Scholar

Jauer L., Jülich B., Voshage M., Meiners W., Selective Laser Melting of magnesium alloys, Eur. Cells Mater, 2015, 30. Search in Google Scholar

Junka A.F., Szymczyk P., Secewicz A., Pawlak A., Smutnicka D., Ziółkowski G., Bartoszewicz M., Chlebus E., The chemical digestion of Ti6Al7Nb scaffolds produced by selective laser melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm, Acta Bioeng. Biomech., 2016, 18, 105–110, DOI: 10.5277/ABB-00333-2015-01. Search in Google Scholar

Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27, 2907–2915, DOI: 10.1016/j.biomaterials.2006.01.017. Search in Google Scholar

Lyczkowska E., Szymczyk P., Dybala B., Chlebus E., Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing, Arch. Civ. Mech. Eng., 2014, 14, 586–594, DOI: 10.1016/j.acme.2014.03.001. Search in Google Scholar

Matena J., Petersen S., Gieseke M., Teske M., Beyerbach M., Kampmann A., Escobar H., Gellrich N.-C., Haferkamp H., Nolte I., Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL, Int. J. Mol. Sci., 2015, 16, 13287–13301, DOI: 10.3390/ijms160613287. Search in Google Scholar

Ng C.C., Savalani M.M., Man H.C., Gibson I., Layer manufacturing of magnesium and its alloy structures for future applications, Virtual Phys. Prototyp, 2010, 5, 13–19, DOI: 10.1080/17452751003718629. Search in Google Scholar

Orapiriyakul W., Young P.S., Damiati L., Tsimbouri P.M., Antibacterial surface modification of titanium implants in orthopaedics, J. Tissue Eng., 2018, 9, DOI: 10.1177/2041731418789838. Search in Google Scholar

Pawlak A., Chlebus E., Szymczyk P., Ziółkowski G., Junka A.F., Selective Laser Melting of Magnesium AZ31 Alloy for Future Medical Applications, Fraunhofer Direct Digital Manufacturing Conference 2016, Fraunhofer, Berlin, 2016, 379–383. Search in Google Scholar

Pawlak A., Szymczyk P., Kurzynowski T., Chlebus E., Selective laser melting of magnesium AZ31B alloy powder, Rapid Prototyp J., 2020, 26, 249–258, DOI: 10.1108/RPJ-05-2019-0137. Search in Google Scholar

Pawlak A., Szymczyk P., Ziółkowski G., Chlebus E., Dybała B., Fabrication of microscaffolds from Ti-6Al-7Nb alloy by SLM, Rapid Prototyp J., 2015, 21, 393–401, DOI: 10.1108/RPJ-10-2013-0101. Search in Google Scholar

Pu Z., Outeiro J.C., Batista A.C., Dillon O.W., Puleo D.A., Jawahir I.S., Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components, Int. J. Mach. Tools Manuf., 2012, 56, 17–27, DOI: 10.1016/j.ijmachtools.2011.12.006. Search in Google Scholar

Roy R., Tiwari M., Donelli G., Tiwari V., Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action, Virulence, 2018, 9, 522–554, DOI: 10.1080/21505594.2017.1313372. Search in Google Scholar

Sanchez A.H.M., Luthringer B.J.C., Feyerabend F., Willumeit R., Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 2015, 13, 16–31, DOI: 10.1016/j.actbio.2014.11.048. Search in Google Scholar

Shrestha A., Zhilong S., Gee N.K., Kishen A., Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity, J. Endod., 2010, 36, 1030–1035, DOI: 10.1016/j.joen.2010.02.008. Search in Google Scholar

Staiger M.P., Pietak A.M., Huadmai J., Dias G., Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 2006, 27, 1728–1734, DOI: 10.1016/j.biomaterials.2005.10.003. Search in Google Scholar

Szewczenko J., Kajzer W., Kajzer A., Basiaga M., Kaczmarek M., Antonowicz M., Nowińska K., Jaworska J., Jelonek K., Kasperczyk J., Biodegradable polymer coatings on Ti6Al7Nb alloy, Acta Bioeng. Biomech., 2020, 21, DOI: 10.37190/abb-01461-2019-01. Search in Google Scholar

Szymczyk P., Junka A., Ziółkowski G., Smutnicka D., Bartoszewicz M., Chlebus E., The ability of S.aureus to form biofilm on the TI-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications, Acta Bioeng. Biomech., 2013, 15, 69–76, DOI: 10.5277/abb130109. Search in Google Scholar

Taltavull C., Torres B., Lopez A.J., Rodrigo P., Otero E., Atrens A., Rams J., Corrosion behaviour of laser surface melted magnesium alloy AZ91D, Mater Des., 2014, 57, 40–50, DOI: 10.1016/j.matdes.2013.12.069. Search in Google Scholar

Tsimbouri P.M., Fisher L., Holloway N., Sjostrom T., Nobbs A.H., Meek R.M.D., Su B., Dalby M.J., Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates, Sci. Rep., 2016, 6, 1–12, DOI: 10.1038/srep36857. Search in Google Scholar

Witte F., Reprint of: The history of biodegradable magnesium implants: A review, Acta Biomater., 2015, 23, S28–S40, DOI: 10.1016/j.actbio.2015.07.017. Search in Google Scholar

Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Feyerabend F., Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater Sci., 2008, 12, 63–72, DOI: 10.1016/j.cossms.2009.04.001. Search in Google Scholar

Zeng R., Chen J., Dietzel W., Hort N., Kainer K.U., Electrochemical behavior of magnesium alloys in simulated body fluids, Trans. Nonferrous Met. Soc. China, 2007, 17, 166–170. Search in Google Scholar

Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., Bian Y., Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater., 2010, 6, 626–640, DOI: 10.1016/j.actbio.2009.06.028. Search in Google Scholar

Zuluaga A.F., Galvis W., Saldarriaga J.G., Agudelo M., Salazar B.E., Vesga O., Etiologic Diagnosis of chronic Osteomyelitis A Prospective Study, Arch. Intern. Med., 2006, 166, 95–100. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Bioingenieurwesen, Zellbiologie, Biomechanik, Medizin, Biomedizinische Technik, Materialwissenschaft, Bio- und Naturmaterialien