1. bookVolumen 32 (2022): Edición 4 (December 2022)
    Big Data and Artificial Intelligence for Cooperative Vehicle-Infrastructure Systems (Special section, pp. 523-599), Baozhen Yao, Shuaian (Hans) Wang and Sobhan (Sean) Asian (Eds.)
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

A Container Ship Traffic Model for Simulation Studies

Publicado en línea: 30 Dec 2022
Volumen & Edición: Volumen 32 (2022) - Edición 4 (December 2022) - Big Data and Artificial Intelligence for Cooperative Vehicle-Infrastructure Systems (Special section, pp. 523-599), Baozhen Yao, Shuaian (Hans) Wang and Sobhan (Sean) Asian (Eds.)
Páginas: 537 - 552
Recibido: 17 Nov 2021
Aceptado: 18 Jul 2022
Detalles de la revista
License
Formato
Revista
eISSN
2083-8492
Primera edición
05 Apr 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

Beasley, J. (2018). OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html. Search in Google Scholar

Bellsola Olba, X., Daamen, W., Vellinga, T. and Hoogendoorn, S.P. (2017). Network capacity estimation of vessel traffic: An approach for port planning, Journal of Waterway, Port, Coastal, and Ocean Engineering 143(5): 04017019.10.1061/(ASCE)WW.1943-5460.0000400 Search in Google Scholar

Bellsola Olba, X., Daamen, W., Vellinga, T. and Hoogendoorn, S.P. (2018). State-of-the-art of port simulation models for risk and capacity assessment based on the vessel navigational behaviour through the nautical infrastructure, Journal of Traffic and Transportation Engineering (English Edition) 5(5): 335–347.10.1016/j.jtte.2018.03.003 Search in Google Scholar

Benaglia, T., Chauveau, D., Hunter, D.R. and Young, D.S. (2009). Mixtools: An R package for analyzing mixture models, Journal of Statistical Software 32(6): 1–29.10.18637/jss.v032.i06 Search in Google Scholar

Bierwirth, C. and Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research 202(3): 615–627.10.1016/j.ejor.2009.05.031 Search in Google Scholar

Bierwirth, C. and Meisel, F. (2015). A follow-up survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research 244(3): 675–689.10.1016/j.ejor.2014.12.030 Search in Google Scholar

Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J. and Lusby, R. (2011). Models for the discrete berth allocation problem: A computational comparison, Transportation Research E: Logistics and Transportation Review 47(4): 461–473.10.1016/j.tre.2010.11.016 Search in Google Scholar

Çagatay, I. and Siu Lee Lam, J. (2021). Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty, Omega 103: 102445, DOI: 10.1016/j.omega.2021.102445. Abierto DOISearch in Google Scholar

Chen, G. and Yang, Z.-Z. (2014). Methods for estimating vehicle queues at a marine terminal: A computational comparison, International Journal of Applied Mathematics and Computer Science 24(3): 611–619, DOI: 10.2478/amcs-2014-0044. Abierto DOISearch in Google Scholar

Delignette-Muller, M.L. and Dutang, C. (2015). fitdistrplus: An R package for fitting distributions, Journal of Statistical Software 64(4): 1–34.10.18637/jss.v064.i04 Search in Google Scholar

Dragovic, B., Park, N.K. and Radmilovic, Z. (2006). Ship-berth link performance evaluation: Simulation and analytical approaches, Maritime Policy & Management 33(3): 281–299.10.1080/03088830600783277 Search in Google Scholar

Feitelson, D.G., Tsafrir, D. and Krakov, D. (2014). Experience with using the parallel workloads archive, Journal of Parallel and Distributed Computing 74(10): 2967–2982.10.1016/j.jpdc.2014.06.013 Search in Google Scholar

Giallombardo, G., Moccia, L., Salani, M. and Vacca, I. (2010). Modeling and solving the tactical berth allocation problem, Transportation Research B: Methodological 44(2): 232–245.10.1016/j.trb.2009.07.003 Search in Google Scholar

Gosasang, V., Chandraprakaikul, W. and Kiattisin, S. (2011). A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port, Asian Journal of Shipping and Logistics 27(3): 463–482.10.1016/S2092-5212(11)80022-2 Search in Google Scholar

Hedjar, R. and Bounkhe, M. (2019). An automatic collision avoidance algorithm for multiple marine surface vehicles, International Journal of Applied Mathematics and Computer Science 29(4): 759–768, DOI: 10.2478/amcs-2019-0056. Abierto DOISearch in Google Scholar

Imai, A., Yamakawa, Y. and Huang, K. (2014). The strategic berth template problem, Transportation Research E: Logistics and Transportation Review 72: 77–100, DOI: 10.1016/j.tre.2014.09.013. Abierto DOISearch in Google Scholar

Kang, L., Meng, Q. and Tan, K.C. (2020). Tugboat scheduling under ship arrival and tugging process time uncertainty, Transportation Research E: Logistics and Transportation Review 144: 102125, DOI: 10.1016/j.tre.2020.102125. Abierto DOISearch in Google Scholar

Lasdon, L., Fox, R. and Ratner, M. (1974). Nonlinear optimization using the generalized reduced gradient method, RAIRO—Operations Research—Recherche Opérationnelle 8(3): 73–103.10.1051/ro/197408V300731 Search in Google Scholar

Li, C., Qi, X. and Song, D. (2016). Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events, Transportation Research B: Methodological 93: 762–788, DOI: 10.1016/j.trb.2015.10.004. Abierto DOISearch in Google Scholar

Liu, C. (2020). Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations, Transportation Research E: Logistics and Transportation Review 133: 101814, DOI: 10.1016/j.tre.2019.11.008. Abierto DOISearch in Google Scholar

NEO Research Group (2013). Vehicle routing problem, https://neo.lcc.uma.es/vrp/. Search in Google Scholar

Pachakis, D. and Kiremidjian, A.S. (2003). Ship traffic modeling methodology for ports, Journal of Waterway, Port, Coastal, and Ocean Engineering 129(5): 193–202.10.1061/(ASCE)0733-950X(2003)129:5(193) Search in Google Scholar

Reinelt, G. (1995). TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html. Search in Google Scholar

Schepler, X., Balev, S., Michel, S. and Sanlaville, É. (2017). Global planning in a multi-terminal and multi-modal maritime container port, Transportation Research E: Logistics and Transportation Review 100: 38–62, DOI: 10.1016/j.tre.2016.12.002. Abierto DOISearch in Google Scholar

Shabayek, A. and Yeung, W. (2002). A simulation model for the Kwai Chung container terminals in Hong Kong, European Journal of Operational Research 140(1): 1–11.10.1016/S0377-2217(01)00216-8 Search in Google Scholar

Stahlbock, R. and Voß, S. (2008). Operations research at container terminals: A literature update, OR Spectrum 30(1): 1–52.10.1007/s00291-007-0100-9 Search in Google Scholar

Taillard, E. (1993). Benchmarks for basic scheduling problems, European Journal of Operational Research 64(2): 278–285.10.1016/0377-2217(93)90182-M Search in Google Scholar

van Asperen, E., Dekker, R., Polman, M. and de Swaan Arons, H. (2003). Modeling ship arrivals in ports, in S. Chick et al. (Eds), Proceedings of the 2003 Winter Simulation Conference, IEEE, New York, pp. 1737–1744.10.1109/WSC.2003.1261627 Search in Google Scholar

Wang, W., Chen, X., Musial, J. and Blazewicz, J. (2020). Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion, International Journal of Applied Mathematics and Computer Science 30(3): 573–584, DOI: 10.34768/amcs-2020-0042. Abierto DOISearch in Google Scholar

Wawrzyniak, J., Drozdowski, M. and Sanlaville, É. (2020). Selecting algorithms for large berth allocation problems, European Journal of Operational Research 283(3): 844–862.10.1016/j.ejor.2019.11.055 Search in Google Scholar

Wawrzyniak, J., Drozdowski, M. and Sanlaville, É. (2021). Container ship traffic model for simulation studies—Additional resources, http://www.cs.put.poznan.pl/mdrozdowski/stm/. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo