[
Beasley, J. (2018). OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
]Search in Google Scholar
[
Bellsola Olba, X., Daamen, W., Vellinga, T. and Hoogendoorn, S.P. (2017). Network capacity estimation of vessel traffic: An approach for port planning, Journal of Waterway, Port, Coastal, and Ocean Engineering 143(5): 04017019.10.1061/(ASCE)WW.1943-5460.0000400
]Search in Google Scholar
[
Bellsola Olba, X., Daamen, W., Vellinga, T. and Hoogendoorn, S.P. (2018). State-of-the-art of port simulation models for risk and capacity assessment based on the vessel navigational behaviour through the nautical infrastructure, Journal of Traffic and Transportation Engineering (English Edition) 5(5): 335–347.10.1016/j.jtte.2018.03.003
]Search in Google Scholar
[
Benaglia, T., Chauveau, D., Hunter, D.R. and Young, D.S. (2009). Mixtools: An R package for analyzing mixture models, Journal of Statistical Software 32(6): 1–29.10.18637/jss.v032.i06
]Search in Google Scholar
[
Bierwirth, C. and Meisel, F. (2010). A survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research 202(3): 615–627.10.1016/j.ejor.2009.05.031
]Search in Google Scholar
[
Bierwirth, C. and Meisel, F. (2015). A follow-up survey of berth allocation and quay crane scheduling problems in container terminals, European Journal of Operational Research 244(3): 675–689.10.1016/j.ejor.2014.12.030
]Search in Google Scholar
[
Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J. and Lusby, R. (2011). Models for the discrete berth allocation problem: A computational comparison, Transportation Research E: Logistics and Transportation Review 47(4): 461–473.10.1016/j.tre.2010.11.016
]Search in Google Scholar
[
Çagatay, I. and Siu Lee Lam, J. (2021). Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty, Omega 103: 102445, DOI: 10.1016/j.omega.2021.102445.
]Ouvrir le DOISearch in Google Scholar
[
Chen, G. and Yang, Z.-Z. (2014). Methods for estimating vehicle queues at a marine terminal: A computational comparison, International Journal of Applied Mathematics and Computer Science 24(3): 611–619, DOI: 10.2478/amcs-2014-0044.
]Ouvrir le DOISearch in Google Scholar
[
Delignette-Muller, M.L. and Dutang, C. (2015). fitdistrplus: An R package for fitting distributions, Journal of Statistical Software 64(4): 1–34.10.18637/jss.v064.i04
]Search in Google Scholar
[
Dragovic, B., Park, N.K. and Radmilovic, Z. (2006). Ship-berth link performance evaluation: Simulation and analytical approaches, Maritime Policy & Management 33(3): 281–299.10.1080/03088830600783277
]Search in Google Scholar
[
Feitelson, D.G., Tsafrir, D. and Krakov, D. (2014). Experience with using the parallel workloads archive, Journal of Parallel and Distributed Computing 74(10): 2967–2982.10.1016/j.jpdc.2014.06.013
]Search in Google Scholar
[
Giallombardo, G., Moccia, L., Salani, M. and Vacca, I. (2010). Modeling and solving the tactical berth allocation problem, Transportation Research B: Methodological 44(2): 232–245.10.1016/j.trb.2009.07.003
]Search in Google Scholar
[
Gosasang, V., Chandraprakaikul, W. and Kiattisin, S. (2011). A comparison of traditional and neural networks forecasting techniques for container throughput at Bangkok port, Asian Journal of Shipping and Logistics 27(3): 463–482.10.1016/S2092-5212(11)80022-2
]Search in Google Scholar
[
Hedjar, R. and Bounkhe, M. (2019). An automatic collision avoidance algorithm for multiple marine surface vehicles, International Journal of Applied Mathematics and Computer Science 29(4): 759–768, DOI: 10.2478/amcs-2019-0056.
]Ouvrir le DOISearch in Google Scholar
[
Imai, A., Yamakawa, Y. and Huang, K. (2014). The strategic berth template problem, Transportation Research E: Logistics and Transportation Review 72: 77–100, DOI: 10.1016/j.tre.2014.09.013.
]Ouvrir le DOISearch in Google Scholar
[
Kang, L., Meng, Q. and Tan, K.C. (2020). Tugboat scheduling under ship arrival and tugging process time uncertainty, Transportation Research E: Logistics and Transportation Review 144: 102125, DOI: 10.1016/j.tre.2020.102125.
]Ouvrir le DOISearch in Google Scholar
[
Lasdon, L., Fox, R. and Ratner, M. (1974). Nonlinear optimization using the generalized reduced gradient method, RAIRO—Operations Research—Recherche Opérationnelle 8(3): 73–103.10.1051/ro/197408V300731
]Search in Google Scholar
[
Li, C., Qi, X. and Song, D. (2016). Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events, Transportation Research B: Methodological 93: 762–788, DOI: 10.1016/j.trb.2015.10.004.
]Ouvrir le DOISearch in Google Scholar
[
Liu, C. (2020). Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations, Transportation Research E: Logistics and Transportation Review 133: 101814, DOI: 10.1016/j.tre.2019.11.008.
]Ouvrir le DOISearch in Google Scholar
[
NEO Research Group (2013). Vehicle routing problem, https://neo.lcc.uma.es/vrp/.
]Search in Google Scholar
[
Pachakis, D. and Kiremidjian, A.S. (2003). Ship traffic modeling methodology for ports, Journal of Waterway, Port, Coastal, and Ocean Engineering 129(5): 193–202.10.1061/(ASCE)0733-950X(2003)129:5(193)
]Search in Google Scholar
[
Reinelt, G. (1995). TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html.
]Search in Google Scholar
[
Schepler, X., Balev, S., Michel, S. and Sanlaville, É. (2017). Global planning in a multi-terminal and multi-modal maritime container port, Transportation Research E: Logistics and Transportation Review 100: 38–62, DOI: 10.1016/j.tre.2016.12.002.
]Ouvrir le DOISearch in Google Scholar
[
Shabayek, A. and Yeung, W. (2002). A simulation model for the Kwai Chung container terminals in Hong Kong, European Journal of Operational Research 140(1): 1–11.10.1016/S0377-2217(01)00216-8
]Search in Google Scholar
[
Stahlbock, R. and Voß, S. (2008). Operations research at container terminals: A literature update, OR Spectrum 30(1): 1–52.10.1007/s00291-007-0100-9
]Search in Google Scholar
[
Taillard, E. (1993). Benchmarks for basic scheduling problems, European Journal of Operational Research 64(2): 278–285.10.1016/0377-2217(93)90182-M
]Search in Google Scholar
[
van Asperen, E., Dekker, R., Polman, M. and de Swaan Arons, H. (2003). Modeling ship arrivals in ports, in S. Chick et al. (Eds), Proceedings of the 2003 Winter Simulation Conference, IEEE, New York, pp. 1737–1744.10.1109/WSC.2003.1261627
]Search in Google Scholar
[
Wang, W., Chen, X., Musial, J. and Blazewicz, J. (2020). Two meta-heuristic algorithms for scheduling on unrelated machines with the late work criterion, International Journal of Applied Mathematics and Computer Science 30(3): 573–584, DOI: 10.34768/amcs-2020-0042.
]Ouvrir le DOISearch in Google Scholar
[
Wawrzyniak, J., Drozdowski, M. and Sanlaville, É. (2020). Selecting algorithms for large berth allocation problems, European Journal of Operational Research 283(3): 844–862.10.1016/j.ejor.2019.11.055
]Search in Google Scholar
[
Wawrzyniak, J., Drozdowski, M. and Sanlaville, É. (2021). Container ship traffic model for simulation studies—Additional resources, http://www.cs.put.poznan.pl/mdrozdowski/stm/.
]Search in Google Scholar