This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Abdalrahim S, Zohri ANA, Khider M, Kamal El-Dean AM, Abulreesh HH, Ahmad I, Elbanna K. Phenotypic and genotypic characterization of exopolysaccharide producing bacteria isolated from fermented fruits, vegetables and dairy products. J Pure Appl Microbiol. 2019 Sep;13(3):1349–1362. https://doi.org/10.22207/jpam.13.3.06AbdalrahimSZohriANAKhiderMKamal El-DeanAMAbulreeshHHAhmadIElbannaK.Phenotypic and genotypic characterization of exopolysaccharide producing bacteria isolated from fermented fruits, vegetables and dairy products. J Pure Appl Microbiol. 2019Sep;13(3):1349–1362. https://doi.org/10.22207/jpam.13.3.06Search in Google Scholar
Abdel-Fattah YR, Saeed HM, Gohar YM, El-Baz MA. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 2005 Apr;40(5):1707–1714. https://doi.org/10.1016/j.procbio.2004.06.048Abdel-FattahYRSaeedHMGoharYMEl-BazMA.Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 2005Apr;40(5):1707–1714. https://doi.org/10.1016/j.procbio.2004.06.048Search in Google Scholar
Abo-Amer AE, El-Shanshoury AERR, Alzahrani OM. Isolation and molecular characterization of heavy metal-resistant Alcaligenes faecalis from sewage wastewater and synthesis of silver nanoparticles. Geomicrobiol J. 2015 Aug;32(9):836–845. https://doi.org/10.1080/01490451.2015.1010754Abo-AmerAEEl-ShanshouryAERRAlzahraniOM.Isolation and molecular characterization of heavy metal-resistant Alcaligenes faecalis from sewage wastewater and synthesis of silver nanoparticles. Geomicrobiol J. 2015Aug;32(9):836–845. https://doi.org/10.1080/01490451.2015.1010754Search in Google Scholar
Adámek V, Králová B, Süchová M, Valentová O, Demnerová K. Purification of microbial uricase. J Chromatogr. 1989 Dec;497: 268–275. https://doi.org/10.1016/0378-4347(89)80028-3AdámekVKrálováBSüchováMValentováODemnerováK.Purification of microbial uricase. J Chromatogr. 1989Dec;497: 268–275. https://doi.org/10.1016/0378-4347(89)80028-3Search in Google Scholar
Aly M, Tork S, Al-Garni S, Allam R. Production and characterization of uricase from Streptomyces exfoliatus UR10 isolated from farm wastes. Turk J Biol. 2013;37(5):520–529. https://doi.org/10.3906/biy-1206-3AlyMTorkSAl-GarniSAllamR.Production and characterization of uricase from Streptomyces exfoliatus UR10 isolated from farm wastes. Turk J Biol. 2013;37(5):520–529. https://doi.org/10.3906/biy-1206-3Search in Google Scholar
Amirthanathan A, Subramaniyan V. Studies on uricase production by marine Bacillus cereus and its optimum conditions. Int J Med. Biosci. 2012;1:5–12.AmirthanathanASubramaniyanV.Studies on uricase production by marine Bacillus cereus and its optimum conditions. Int J Med. Biosci. 2012;1:5–12.Search in Google Scholar
Amirthanathan A, Vijayakumar S. Purification and optimization of uricase enzyme produced by Pseudomonas aeruginosa. J Exp Sci. 2011;2(11):5–8.AmirthanathanAVijayakumarS.Purification and optimization of uricase enzyme produced by Pseudomonas aeruginosa. J Exp Sci. 2011;2(11):5–8.Search in Google Scholar
Atalla MM, Hamed ER, Ahmed NE, Farag MM. Purification and characterization of uricase enzyme produced by Gliomastix gueg. Gate2Biotech. 2010;2(11):1–13.AtallaMMHamedERAhmedNEFaragMM.Purification and characterization of uricase enzyme produced by Gliomastix gueg. Gate2Biotech. 2010;2(11):1–13.Search in Google Scholar
Atty FK, Joseph J. Isolation and identification of uric acid degrading bacteria, optimization of uricase production and purification of uricase enzyme. Int J Ad. Res. 2016 Dec;4(12):2732–2742. https://doi.org/10.21474/ijar01/2702AttyFKJosephJ.Isolation and identification of uric acid degrading bacteria optimization of uricase production and purification of uricase enzyme. Int J Ad. Res. 2016Dec;4(12):2732–2742. https://doi.org/10.21474/ijar01/2702Search in Google Scholar
Azab EA, Ali MM, Fareed MF. Studies on uricase induction in certain bacteria. Egypt J Biol. 2005;7:44–54.AzabEAAliMMFareedMF.Studies on uricase induction in certain bacteria. Egypt J Biol. 2005;7:44–54.Search in Google Scholar
Bakhtiar S, Andersson MM, Gessesse A, Mattiasson B, Hatti-Kaul R. Stability characteristics of a calcium-independent alkaline protease from Nesterenkonia sp. Enzyme Microb Technol. 2003 Apr; 32(5):525–531. https://doi.org/10.1016/S0141-0229(02)00336-8BakhtiarSAnderssonMMGessesseAMattiassonBHatti-KaulR.Stability characteristics of a calcium-independent alkaline protease from Nesterenkonia sp. Enzyme Microb Technol. 2003Apr; 32(5):525–531. https://doi.org/10.1016/S0141-0229(02)00336-8Search in Google Scholar
Bakhtiari S, Toosi P, Samadi S, Bakhshi M. Assessment of uric acid level in the saliva of patients with oral lichen planus. Med Princ Pract. 2017;26(1):57–60. https://doi.org/10.1159/000452133BakhtiariSToosiPSamadiSBakhshiM.Assessment of uric acid level in the saliva of patients with oral lichen planus. Med Princ Pract. 2017;26(1):57–60. https://doi.org/10.1159/000452133Search in Google Scholar
Bauer AW, Kirby WMM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966 Apr;45(4_ts,):493–496. https://doi.org/10.1093/ajcp/45.4_ts.493BauerAWKirbyWMMSherrisJCTurckM.Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966Apr;45(4_ts,):493–496. https://doi.org/10.1093/ajcp/45.4_ts.493Search in Google Scholar
Beedkar SD, Khobragade CN, Bodade RG, Vinchurkar AS. Comparative structural modeling and docking studies of uricase: Possible implication in enzyme supplementation therapy for hyperuricemic disorders. Comput Biol Med. 2012 Jun;42(6):657–666. https://doi.org/10.1016/j.compbiomed.2012.03.001BeedkarSDKhobragadeCNBodadeRGVinchurkarAS.Comparative structural modeling and docking studies of uricase: Possible implication in enzyme supplementation therapy for hyperuricemic disorders. Comput Biol Med. 2012Jun;42(6):657–666. https://doi.org/10.1016/j.compbiomed.2012.03.001Search in Google Scholar
Bobulescu IA, Moe OW. Renal transport of uric acid: Evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012 Nov; 19(6):358–371. https://doi.Org/10.1053/j.ackd.2012.07.009BobulescuIAMoeOW.Renal transport of uric acid: Evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012Nov; 19(6):358–371. https://doi.Org/10.1053/j.ackd.2012.07.009Search in Google Scholar
Bongaerts GP, Sin IL, Peters AL, Vogels GD. Purine degradation in Pseudomonas aeruginosa and Pseudomonas testosteroni. Biochim Biophys Acta. 1977 Aug 25;499(1):111–118. https://doi.org/10.1016/0304-4165(77)90233-1BongaertsGPSinILPetersALVogelsGD.Purine degradation in Pseudomonas aeruginosa and Pseudomonas testosteroni. Biochim Biophys Acta. 1977Aug25;499(1):111–118. https://doi.org/10.1016/0304-4165(77)90233-1Search in Google Scholar
Castellani A, Chalmers AJ. Manual of tropical medicine. London (UK): Baillière, Tindall and Cox; 1919. https://doi.org/10.5962/bhl.title.84653CastellaniAChalmersAJ.Manual of tropical medicine. London (UK): Baillière, Tindall and Cox; 1919. https://doi.org/10.5962/bhl.title.84653Search in Google Scholar
Chaudhary K, Malhotra K, Sowers J, Aroor A. Uric acid – key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013 Oct;3(3):208–220. https://doi.org/10.1159/000355405ChaudharyKMalhotraKSowersJAroorA.Uric acid – key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013Oct;3(3):208–220. https://doi.org/10.1159/000355405Search in Google Scholar
Cheung WL, Hon KL, Fung CM, Leung AK. Tumor lysis syndrome in childhood malignancies. Drugs Context. 2020 Feb;9:2019-8-2. https://doi.org/10.7573/dic.2019-8-2CheungWLHonKLFungCMLeungAK.Tumor lysis syndrome in childhood malignancies. Drugs Context. 2020Feb;9:2019-8-2.https://doi.org/10.7573/dic.2019-8-2Search in Google Scholar
Chohan S, Becker MA. Update on emerging urate-lowering therapies. Curr Opin Rheumatol. 2009 Mar;21(2):143–149. https://doi.org/10.1097/bor.0b013e328325bd94ChohanSBeckerMA.Update on emerging urate-lowering therapies. Curr Opin Rheumatol. 2009Mar;21(2):143–149. https://doi.org/10.1097/bor.0b013e328325bd94Search in Google Scholar
Clarridge JE. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004 Oct;17(4):840–862. https://doi.org/10.1128/cmr.17.4.840-862.2004ClarridgeJE.Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev. 2004Oct;17(4):840–862. https://doi.org/10.1128/cmr.17.4.840-862.2004Search in Google Scholar
CLSI. Performance standards for antimicrobial susceptibility testing. 34th ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2024.CLSI. Performance standards for antimicrobial susceptibility testing. 34th ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2024.Search in Google Scholar
Cruz D, Cisneros R, Benítez Á, Zúñiga-Sarango W, Peña J, Fernández H, Jaramillo A. Gram-negative bacteria from organic and conventional agriculture in the hydrographic basin of Loja: Quality or pathogen reservoir? Agronomy. 2021 Now;11(11):2362. https://doi.org/10.3390/agronomy11112362CruzDCisnerosRBenítezÁZúñiga-SarangoWPeñaJFernándezHJaramilloA.Gram-negative bacteria from organic and conventional agriculture in the hydrographic basin of Loja: Quality or pathogen reservoir?Agronomy. 2021Now;11(11):2362. https://doi.org/10.3390/agronomy11112362Search in Google Scholar
de Oliveira AN, de Oliveira LA, Andrade JS. Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains. Braz Arch Biol Technol. 2010 Oct;53(5):1185–1195. https://doi.org/10.1590/s1516-89132010000500024de OliveiraANde OliveiraLAAndradeJS.Production and some properties of crude alkaline proteases of indigenous Central Amazonian rhizobia strains. Braz Arch Biol Technol. 2010Oct;53(5):1185–1195. https://doi.org/10.1590/s1516-89132010000500024Search in Google Scholar
El Ridi R, Tallima H, Migliardo F. Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination. Biochim Biophys Acta Gen Subj. 2017 Jan; 1861(1): 3613–3620. https://doi.org/10.1016/j.bbagen.2016.03.036El RidiRTallimaHMigliardoF.Biochemical and biophysical methodologies open the road for effective schistosomiasis therapy and vaccination. Biochim Biophys Acta Gen Subj. 2017Jan; 1861(1): 3613–3620. https://doi.org/10.1016/j.bbagen.2016.03.036Search in Google Scholar
Elbanna K, Alshareef A, Neyaz LA, El-Readi MZ, Abulreesh HH. Microbial uricase and its unique potential applications. Adv Microbiol. 2024;63(2):81–91. https://doi.org/10.2478/am-2024-0007ElbannaKAlshareefANeyazLAEl-ReadiMZAbulreeshHH.Microbial uricase and its unique potential applications. Adv Microbiol. 2024;63(2):81–91. https://doi.org/10.2478/am-2024-0007Search in Google Scholar
Elbanna K, Hassan G, Khider M, Mandour R. Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. J. Bioremed Biodegrad. 2010;1:110. https://doi.org/10.4172/2155–6199.1000110ElbannaKHassanGKhiderMMandourR.Safe biodegradation of textile azo dyes by newly isolated lactic acid bacteria and detection of plasmids associated with degradation. J. Bioremed Biodegrad. 2010;1:110. https://doi.org/10.4172/2155-6199.1000110Search in Google Scholar
El-Naggar NEA. Isolation, screening and identification of actinobacteria with uricase activity: Statistical optimization of fermentation conditions for improved production of uricase by Streptomyces rochei NEAE-25. Int J Pharmacol. 2015;11(7):644–658. https://doi.org/10.3923/ijp.2015.644.658El-NaggarNEA.Isolation, screening and identification of actinobacteria with uricase activity: Statistical optimization of fermentation conditions for improved production of uricase by Streptomyces rochei NEAE-25. Int J Pharmacol. 2015;11(7):644–658. https://doi.org/10.3923/ijp.2015.644.658Search in Google Scholar
Fathallah-Shaykh SA, Cramer MT. Uric acid and the kidney. Pediatr Nephrol. 2014 Jun;29(6):999–008. https://doi.org/10.1007/s00467-013-2549-xFathallah-ShaykhSACramerMT.Uric acid and the kidney. Pediatr Nephrol. 2014Jun;29(6):999–008. https://doi.org/10.1007/s00467-013-2549-xSearch in Google Scholar
Fox GE, Wisotzkey JD, Jurtshuk P Jr. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol. 1992 Jan;42(1):166–170. https://doi.org/10.1099/00207713-42-1-166FoxGEWisotzkeyJDJurtshukPJr.How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol. 1992Jan;42(1):166–170. https://doi.org/10.1099/00207713-42-1-166Search in Google Scholar
Gabison L, Prangé T, Colloc’h N, El Hajji M, Castro B, Chiadmi M. Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: Mechanistic implications. BMC Struct Biol. 2008 Jul;8:32. https://doi.org/10.1186/1472-6807-8-32GabisonLPrangéTColloc’hNEl HajjiMCastroBChiadmiM.Structural analysis of urate oxidase in complex with its natural substrate inhibited by cyanide: Mechanistic implications. BMC Struct Biol. 2008Jul;8:32. https://doi.org/10.1186/1472-6807-8-32Search in Google Scholar
Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for general and molecular bacteriology. Washington (USA): American Society for Microbiology; 1994.GerhardtPMurrayRGEWoodWAKriegNR.Methods for general and molecular bacteriology. Washington (USA): American Society for Microbiology; 1994.Search in Google Scholar
Ghosh T, Sarkar P. Isolation of a novel uric-acid-degrading microbe Comamonas sp. BT UA and rapid biosensing of uric acid from extracted uricase enzyme. J Biosci. 2014 Dec;39(5):805–819. https://doi.org/10.1007/s12038-014-9476-2GhoshTSarkarP.Isolation of a novel uric-acid-degrading microbe Comamonas sp. BT UA and rapid biosensing of uric acid from extracted uricase enzyme. J Biosci. 2014Dec;39(5):805–819. https://doi.org/10.1007/s12038-014-9476-2Search in Google Scholar
Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y. Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis. 2014 May;6(5):534–538.GuoLYeLZhaoQMaYYangJLuoY.Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis. 2014May;6(5):534–538.Search in Google Scholar
Hafez RM, Abdel-Rahman TM, Naguib RM. Uric acid in plants and microorganisms: Biological applications and genetics – A review. J Adv Res. 2017 Sep;8(5):475–486. https://doi.org/10.1016/j.jare.2017.05.003HafezRMAbdel-RahmanTMNaguibRM.Uric acid in plants and microorganisms: Biological applications and genetics – A review. J Adv Res. 2017Sep;8(5):475–486. https://doi.org/10.1016/j.jare.2017.05.003Search in Google Scholar
Handayani I, Utami T, Hidayat C, Rahayu ES. Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions. Int Food Res J. 2018 Aug;25(4): 1661–1667.HandayaniIUtamiTHidayatCRahayuES.Screening of lactic acid bacteria producing uricase and stability assessment in simulated gastrointestinal conditions. Int Food Res J. 2018Aug;25(4): 1661–1667.Search in Google Scholar
Honarbakhsh F, Abolmaali S, Amoozegar MA. Uricase activity of halophilic bacteria from Iranian salt lakes. Iran J Sci Technol Trans Sci. 2021 Oct;45:1597–1606. https://doi.org/10.1007/s40995-021-01179-0HonarbakhshFAbolmaaliSAmoozegarMA.Uricase activity of halophilic bacteria from Iranian salt lakes. Iran J Sci Technol Trans Sci. 2021Oct;45:1597–1606. https://doi.org/10.1007/s40995-021-01179-0Search in Google Scholar
Jagathy K, Pushparaj A, Ronald J. Uricase production from Bacillus subtilis isolated from poultry waste. Int. J Adv Res Biol Sci. 2016; 3(6):255–262.JagathyKPushparajARonaldJ.Uricase production from Bacillus subtilis isolated from poultry waste. Int. J Adv Res Biol Sci. 2016; 3(6):255–262.Search in Google Scholar
Jalal DI. Hyperuricemia, the kidneys, and the spectrum of associated diseases: A narrative review. Curr Med Res Opin. 2016 Nov; 32(11):1863–1869. https://doi.org/10.1080/03007995.2016.1218840JalalDI.Hyperuricemia, the kidneys, and the spectrum of associated diseases: A narrative review. Curr Med Res Opin. 2016Nov; 32(11):1863–1869. https://doi.org/10.1080/03007995.2016.1218840Search in Google Scholar
Kai L, Ma XH, Zhou XL, Jia XM, Li X, Guo KP. Purification and characterization of a thermostable uricase from Microbacterium sp. strain ZZJ4-1. World J Microbiol Biotechnol. 2008 Mar;24:401–406. https://doi.org/10.1007/s11274-007-9489-1KaiLMaXHZhouXLJiaXMLiXGuoKP.Purification and characterization of a thermostable uricase from Microbacterium sp. strain ZZJ4-1. World J Microbiol Biotechnol. 2008Mar;24:401–406. https://doi.org/10.1007/s11274-007-9489-1Search in Google Scholar
Kanbay M, Segal M, Afsar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013 Jun;99(11):759–766. https://doi.org/10.1136/heartjnl-2012-302535KanbayMSegalMAfsarBKangDHRodriguez-IturbeBJohnsonRJ.The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013Jun;99(11):759–766. https://doi.org/10.1136/heartjnl-2012-302535Search in Google Scholar
Khucharoenphaisan K, Sinma K. Production and partial characterization of uric acid degrading enzyme from new source Saccharopolyspora sp. PNR11. Pak J Biol Sci. 2011 Feb;14(3):226–231. https://doi.org/10.3923/pjbs.2011.226.231KhucharoenphaisanKSinmaK.Production and partial characterization of uric acid degrading enzyme from new source Saccharopolyspora sp. PNR11. Pak J Biol Sci. 2011Feb;14(3):226–231. https://doi.org/10.3923/pjbs.2011.226.231Search in Google Scholar
Kiba N, Suzuki K, Miwa T, Tachibana M, Koizumi H, Tani K. Chemiluminometric determination of uric acid in plasma by closed-loop FIA with a coimmobilized enzyme flow cell. Anal Sci 2000 Nov; 16:1203–1205. https://doi.org/10.2116/analsci.16.1203KibaNSuzukiKMiwaTTachibanaMKoizumiHTaniK.Chemiluminometric determination of uric acid in plasma by closed-loop FIA with a coimmobilized enzyme flow cell. Anal Sci2000Nov; 16:1203–1205. https://doi.org/10.2116/analsci.16.1203Search in Google Scholar
Kim S, Kim MH, Lee WI, Kang SY, Jeon YL. Misidentification of Acinetobacter baumannii as Alcaligenes faecalis by VITEK 2 System; Case report. Lab Med. 2017 Dec;49(1):e14-e17. https://doi.org/10.1093/labmed/lmx062KimSKimMHLeeWIKangSYJeonYL.Misidentification of Acinetobacter baumannii as Alcaligenes faecalis by VITEK 2 System; Case report. Lab Med. 2017Dec;49(1):e14–e17. https://doi.org/10.1093/labmed/lmx062Search in Google Scholar
Kim SM, Lee SH, Kim YG, Kim SY, Seo JW, Choi YW, Kim DJ, Jeong KH, Lee TW, Ihm CG, et al. Hyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 2015 May;308(9):F993–F1003. https://doi.org/10.1152/ajprenal.00637.2014KimSMLeeSHKimYGKimSYSeoJWChoiYWKimDJJeongKHLeeTWIhmCGHyperuricemia-induced NLRP3 activation of macrophages contributes to the progression of diabetic nephropathy. Am J Physiol Renal Physiol. 2015May;308(9):F993–F1003. https://doi.org/10.1152/ajprenal.00637.2014Search in Google Scholar
Koyama Y, Ichikawa T, Nakano E. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding the Candida uti-lis urate oxidase (uricase). J Biochem. 1996 Nov;120(5):969–973. https://doi.org/10.1093/oxfordjournals.jbchem.a021514KoyamaYIchikawaTNakanoE.Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding the Candida uti-lis urate oxidase (uricase). J Biochem. 1996Nov;120(5):969–973. https://doi.org/10.1093/oxfordjournals.jbchem.a021514Search in Google Scholar
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug;227(5259):680–685. https://doi.org/10.1038/227680a0LaemmliUK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970Aug;227(5259):680–685. https://doi.org/10.1038/227680a0Search in Google Scholar
Lekshmy V, Raval K. Isolation and production studies of uricase producing bacterial strains from poultry waste. Int J Adv Res Trends Eng Technol. 2016;3:152–157.LekshmyVRavalK.Isolation and production studies of uricase producing bacterial strains from poultry waste. Int J Adv Res Trends Eng Technol. 2016;3:152–157.Search in Google Scholar
Li J, Chen Z, Hou L, Fan H, Weng S, Xu C, Ren J, Li B, Chen W. High-level expression, purification, and characterization of nontagged Aspergillus flavus urate oxidase in Escherichia coli. Protein Expr Purif. 2006 Sep;49(1):55–59. https://doi.org/10.1016/j.pep.2006.02.003LiJChenZHouLFanHWengSXuCRenJLiBChenW.High-level expression purification, and characterization of nontagged Aspergillus flavus urate oxidase in Escherichia coli. Protein Expr Purif. 2006Sep;49(1):55–59. https://doi.org/10.1016/j.pep.2006.02.003Search in Google Scholar
Liu Y, Jarman JB, Low YS, Augustijn HE, Huang S, Chen H, DeFeo ME, Sekiba K, Hou BH, Meng X, et al. A widely distributed gene cluster compensates for uricase loss in hominids. Cell. 2023 Aug;186(16):3400–3413.e20. https://doi.org/10.1016/j.cell.2023.06.010LiuYJarmanJBLowYSAugustijnHEHuangSChenHDeFeoMESekibaKHouBHMengXA widely distributed gene cluster compensates for uricase loss in hominids. Cell. 2023Aug;186(16):3400–3413.e20. https://doi.org/10.1016/j.cell.2023.06.010Search in Google Scholar
Lotfy WA. Production of a thermostable uricase by a novel Bacillus thermocatenulatus strain. Bioresour Technol. 2008 Mar;99(4): 699–702. https://doi.org/10.1016/j.biortech.2007.01.048LotfyWA.Production of a thermostable uricase by a novel Bacillus thermocatenulatus strain. Bioresour Technol. 2008Mar;99(4): 699–702. https://doi.org/10.1016/j.biortech.2007.01.048Search in Google Scholar
Madigan MT, Martinko JM, Parker J. Brock biology of microorganisms. London (UK): Prentice Hall; 2000.MadiganMTMartinkoJMParkerJ.Brock biology of microorganisms. London (UK): Prentice Hall; 2000.Search in Google Scholar
Mehanni M, Abd El-Aziz S. A new bacterial strain Alcaligenes aquatilis MAG 1 associated with the Mediterranean Sea Lithophaga (Bivalvia) precipitating in nutrient free medium shell-like calcium carbonate polymorphs. Egypt Acad J Biol Sci. 2019:11(1):111–124. https://doi.org/10.21608/eajbsg.2019.153533MehanniMAbd El-AzizS.A new bacterial strain Alcaligenes aquatilis MAG 1 associated with the Mediterranean Sea Lithophaga (Bivalvia) precipitating in nutrient free medium shell-like calcium carbonate polymorphs. Egypt Acad J Biol Sci. 2019:11(1):111–124. https://doi.org/10.21608/eajbsg.2019.153533Search in Google Scholar
Murray RGE, Brenner DJ, Colwell RR, De Vos P, Goodfellow M, Grimont PAD, Pfennig N, Stackebrandt E, Zavarzin GA. Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol. 1990 Apr;40(2):213–215. https://doi.org/10.1099/00207713-40-2-213MurrayRGEBrennerDJColwellRRDe VosPGoodfellowMGrimontPADPfennigNStackebrandtEZavarzinGA.Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol. 1990Apr;40(2):213–215. https://doi.org/10.1099/00207713-40-2-213Search in Google Scholar
Nanda P, Babu PE. Isolation, screening and production studies of uricase producing bacteria from poultry sources. Prep Biochem Biotechnol. 2014;44(8):811–821. https://doi.org/10.1080/10826068.2013.867875NandaPBabuPE.Isolation, screening and production studies of uricase producing bacteria from poultry sources. Prep Biochem Biotechnol. 2014;44(8):811–821. https://doi.org/10.1080/10826068.2013.867875Search in Google Scholar
Nanda P, Jagadeesh Babu PE. Studies on the site-specific PEGylation induced interferences instigated in uricase quantification using the Bradford method. Int J Pept Res Ther. 2016 Sep;22:399–406. https://doi.org/10.1007/s10989-016-9518-8NandaPJagadeesh BabuPE.Studies on the site-specific PEGylation induced interferences instigated in uricase quantification using the Bradford method. Int J Pept Res Ther. 2016Sep;22:399–406. https://doi.org/10.1007/s10989-016-9518-8Search in Google Scholar
Nanda P, Babu PJ, Fernandes J, Hazarika P, Dhabre RR. Studies on production, optimization and purification of uricase from Gliocladium viride. Res. Biotechnol. 2012;3(4):35–46.NandaPBabuPJFernandesJHazarikaPDhabreRR.Studies on production, optimization and purification of uricase from Gliocladium viride. Res. Biotechnol. 2012;3(4):35–46.Search in Google Scholar
Sarni, Natsir H, Dali S. Production and characterization chito-sanase of sponge symbiont bacteria Klebsiella sp. to hydrolyze chitosan be chitooligosaccarides. Mar Chim Acta. 2016 Apr; 17(1): 1441–2132.SarniNatsirHDaliS.Production and characterization chito-sanase of sponge symbiont bacteria Klebsiella sp. to hydrolyze chitosan be chitooligosaccarides. Mar Chim Acta. 2016Apr; 17(1): 1441–2132.Search in Google Scholar
Nelapati AK, Meena S, Singh AK, Bhakta N, Ponnan Ettiyappan J. In silico structural and functional analysis of Bacillus uricases. Curr. Proteomics. 2021:18(2):124–142. https://doi.org/10.2174/1570164617999200512081127NelapatiAKMeenaSSinghAKBhaktaNPonnan EttiyappanJ.In silico structural and functional analysis of Bacillus uricases. Curr. Proteomics. 2021:18(2):124–142. https://doi.org/10.2174/1570164617999200512081127Search in Google Scholar
Ogawa J. Analysis of microbial purine metabolism and its application for hyperuricemia prevention. Noda City (Japan): Noda Institute for Scientific Research; 2006. [cited 2024 September 24]. Available from https://www.nisr.or.jp/wp-content/uploads/NISR06ogawa.pdfOgawaJ.Analysis of microbial purine metabolism and its application for hyperuricemia prevention. Noda City (Japan): Noda Institute for Scientific Research; 2006. [cited 2024 September 24]. Available from https://www.nisr.or.jp/wp-content/uploads/NISR06ogawa.pdfSearch in Google Scholar
Page RD. TreeView: An application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996 Aug;12(4):357–358. https://doi.org/10.1093/bioinformatics/12.4.357PageRD.TreeView: An application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996Aug;12(4):357–358. https://doi.org/10.1093/bioinformatics/12.4.357Search in Google Scholar
Patel RK, Dodia MS, Joshi RH, Singh SP. Purification and characterization of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Process Biochem. 2006 Sep;41(9):2002–2009. https://doi.org/10.1016/j.procbio.2006.04.016PatelRKDodiaMSJoshiRHSinghSP.Purification and characterization of alkaline protease from a newly isolated haloalkaliphilic Bacillus sp. Process Biochem. 2006Sep;41(9):2002–2009. https://doi.org/10.1016/j.procbio.2006.04.016Search in Google Scholar
Pawar SV, Rathod VK. Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis. Ultrason Sonochem. 2018 Jul;45:173–179. https://doi.org/10.1016/j.ultsonch.2018.03.004PawarSVRathodVK.Ultrasound assisted process intensification of uricase and alkaline protease enzyme co-production in Bacillus licheniformis. Ultrason Sonochem. 2018Jul;45:173–179. https://doi.org/10.1016/j.ultsonch.2018.03.004Search in Google Scholar
Perez-Ruiz F, Martínez-Indart L, Carmona L, Herrero-Beites AM, Pijoan JI, Krishnan E. Tophaceous gout and high level of hyperu-ricaemia are both associated with increased risk of mortality in patients with gout. Ann Rheum Dis. 2014 Jan;73(1):177–182. https://doi.org/10.1136/annrheumdis-2012-202421Perez-RuizFMartínez-IndartLCarmonaLHerrero-BeitesAMPijoanJIKrishnanE.Tophaceous gout and high level of hyperu-ricaemia are both associated with increased risk of mortality in patients with gout. Ann Rheum Dis. 2014Jan;73(1):177–182. https://doi.org/10.1136/annrheumdis-2012-202421Search in Google Scholar
Pfrimer P, de Moraes LM, Galdino AS, Salles LP, Reis VC, De Marco JL, Prates MV, Bloch C Jr, Torres FA. Cloning, purification, and partial characterization of Bacillus subtilis urate oxidase expressed in Escherichia coli. J Biomed Biotechnol. 2010;2010:674908. https://doi.org/10.1155/2010/674908PfrimerPde MoraesLMGaldinoASSallesLPReisVCDe MarcoJLPratesMVBlochCJrTorresFA.Cloning, purification, and partial characterization of Bacillus subtilis urate oxidase expressed in Escherichia coli. J Biomed Biotechnol. 2010;2010:674908. https://doi.org/10.1155/2010/674908Search in Google Scholar
Pierzynowska K, Deshpande A, Mosiichuk N, Terkeltaub R, Szczurek P, Salido E, Pierzynowski S, Grujic D. Oral treatment with an engineered uricase, ALLN-346, reduces hyperuricemia, and uricosuria in urate oxidase-deficient mice. Front Med. 2020 Nov; 7:569215. https://doi.org/10.3389/fmed.2020.569215PierzynowskaKDeshpandeAMosiichukNTerkeltaubRSzczurekPSalidoEPierzynowskiSGrujicD.Oral treatment with an engineered uricase, ALLN-346, reduces hyperuricemia, and uricosuria in urate oxidase-deficient mice. Front Med. 2020Nov; 7:569215. https://doi.org/10.3389/fmed.2020.569215Search in Google Scholar
Pustake SO, Bhagwat PK, Dandge PB. Statistical media optimization for the production of clinical uricase from Bacillus subtilis strain SP6. Heliyon. 2019 May;5(5):e01756. https://doi.org/10.1016/j.heliyon.2019.e01756PustakeSOBhagwatPKDandgePB.Statistical media optimization for the production of clinical uricase from Bacillus subtilis strain SP6. Heliyon. 2019May;5(5):e01756. https://doi.org/10.1016/j.heliyon.2019.e01756Search in Google Scholar
Pustake SO, Bhagwat P, Pillai S, Dandge PB. Purification and characterisation of uricase from Bacillus subtilis SP6. Process Biochem. 2022 Feb;113:55–61. https://doi.org/10.1016/j.procbio.2021.12.010PustakeSOBhagwatPPillaiSDandgePB.Purification and characterisation of uricase from Bacillus subtilis SP6. Process Biochem. 2022Feb;113:55–61. https://doi.org/10.1016/j.procbio.2021.12.010Search in Google Scholar
Ram SK, Raval K, JagadeeshBabu PE. Enhancement of a novel extracellular uricase production by media optimization and partial purification by aqueous three-phase system. Prep Biochem Biotechnol. 2015;45(8):810–824. https://doi.org/10.1080/10826068.2014.970690RamSKRavalKJagadeeshBabuPE.Enhancement of a novel extracellular uricase production by media optimization and partial purification by aqueous three-phase system. Prep Biochem Biotechnol. 2015;45(8):810–824. https://doi.org/10.1080/10826068.2014.970690Search in Google Scholar
Ravichandran R, Hemaasri S, Cameotra SS, Jayaprakash NS. Purification and characterization of an extracellular uricase from a new isolate of Sphingobacterium thalpophilum (VITPCB5). Protein Expr Purif. 2015 Oct;114:136–142. https://doi.org/10.1016/j.pep.2015.06.017RavichandranRHemaasriSCameotraSSJayaprakashNS.Purification and characterization of an extracellular uricase from a new isolate of Sphingobacterium thalpophilum (VITPCB5). Protein Expr Purif. 2015Oct;114:136–142. https://doi.org/10.1016/j.pep.2015.06.017Search in Google Scholar
Ray RR, Pattnaik S. Alcaligenes faecalis: a bacterium for sustainable management of environment. Environ Qual Manag. 2024; 34:e22189. https://doi.org/10.1002/tqem.22189RayRRPattnaikS.Alcaligenes faecalis: a bacterium for sustainable management of environment. Environ Qual Manag. 2024; 34:e22189. https://doi.org/10.1002/tqem.22189Search in Google Scholar
Roopa RA, Mantelingu K, Guin M, Thimmaiah SB. Bienzymatic spectrophotometric method for uric acid estimation in human serum and urine. J Anal Chem. 2022 Mar; 77:301–307. https://doi.org/10.1134/s1061934822030091RoopaRAMantelinguKGuinMThimmaiahSB.Bienzymatic spectrophotometric method for uric acid estimation in human serum and urine. J Anal Chem. 2022Mar; 77:301–307. https://doi.org/10.1134/s1061934822030091Search in Google Scholar
Saeed HM, Abdel-Fattah YR, Gohar YM, Elbaz MA. Purification and characterization of extracellular Pseudomonas aeruginosa urate oxidase enzyme. Pol J Microbiol. 2004;53(1):45–52.SaeedHMAbdel-FattahYRGoharYMElbazMA.Purification and characterization of extracellular Pseudomonas aeruginosa urate oxidase enzyme. Pol J Microbiol. 2004;53(1):45–52.Search in Google Scholar
Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454SaitouNNeiM.The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987Jul;4(4): 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454Search in Google Scholar
Selvaraj C, Thirumalai VP. Screening, production and optimization of uricase from P. aeruginosa. Eur J Biotechnol Biosci 2017 Jan; 5(1):57–61.SelvarajCThirumalaiVP.Screening, production and optimization of uricase from P. aeruginosa. Eur J Biotechnol Biosci2017Jan; 5(1):57–61.Search in Google Scholar
Simmons DG, Gray JG, Rose LP, Dillman RC, Miller SE. Isolation of an etiologic agent of acute respiratory disease (rhinotracheitis) of turkey poults. Avian Dis. 1979;23(1):194–203. https://doi.org/10.2307/1589686SimmonsDGGrayJGRoseLPDillmanRCMillerSE.Isolation of an etiologic agent of acute respiratory disease (rhinotracheitis) of turkey poults. Avian Dis. 1979;23(1):194–203. https://doi.org/10.2307/1589686Search in Google Scholar
Suzuki K, Sakasegawa S, Misaki H, Sugiyama M. Molecular cloning and expression of uricase gene from Arthrobacter globiformis in Escherichia coli and characterization of the gene product. J Biosci Bioeng. 2004;98(3):153–158. https://doi.org/10.1016/s1389-1723(04)00259-2SuzukiKSakasegawaSMisakiHSugiyamaM.Molecular cloning and expression of uricase gene from Arthrobacter globiformis in Escherichia coli and characterization of the gene product. J Biosci Bioeng. 2004;98(3):153–158. https://doi.org/10.1016/s1389-1723(04)00259-2Search in Google Scholar
Tandon S, Sharma A, Singh S, Sharma S, Sarma SJ. Therapeutic enzymes: Discoveries, production and applications. J Drug Delivery Sci Technol. 2021 Jun;63:102455. https://doi.org/10.1016/j.jddst.2021.102455TandonSSharmaASinghSSharmaSSarmaSJ.Therapeutic enzymes: Discoveries, production and applications. J Drug Delivery Sci Technol. 2021Jun;63:102455. https://doi.org/10.1016/j.jddst.2021.102455Search in Google Scholar
Thillainayagi S, Harikrishnan S, Jayalakshmi S. Screening, optimization and production of uricase from Alcaligenes faecalis. Int J Res Educ Sci Methods. 2021 Apr;9(4):69–74.ThillainayagiSHarikrishnanSJayalakshmiS.Screening, optimization and production of uricase from Alcaligenes faecalis. Int J Res Educ Sci Methods. 2021Apr;9(4):69–74.Search in Google Scholar
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997 Dec;25(24):4876–4882 https://doi.org/10.1093/nar/25.24.4876ThompsonJDGibsonTJPlewniakFJeanmouginFHigginsDG.The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997Dec;25(24):4876–4882https://doi.org/10.1093/nar/25.24.4876Search in Google Scholar
Van der Drift L, Vogels GD, Van der Drift C. Allantoin racemase: A new enzyme from Pseudomonas species. Biochim Biophys Acta. 1975 May;391(1):240–248. https://doi.org/10.1016/0005-2744(75)90170-9Van der DriftLVogelsGDVan der DriftC.Allantoin racemase: A new enzyme from Pseudomonas species. Biochim Biophys Acta. 1975May;391(1):240–248. https://doi.org/10.1016/0005-2744(75)90170-9Search in Google Scholar
Versalovic J. Manual of Clinical Microbiology 10th ed. ASM Press, 2011. USA.VersalovicJ.Manual of Clinical Microbiology10th ed. ASM Press, 2011. USA.Search in Google Scholar
Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW. Manual of clinical microbiology. Washington (USA): American Society for Microbiology; 2011.VersalovicJCarrollKCFunkeGJorgensenJHLandryMLWarnockDW.Manual of clinical microbiology. Washington (USA): American Society for Microbiology; 2011.Search in Google Scholar
Watanabe Y, Morita M. Effect of glucose on the uricase formation by Streptomyces sp. Agric Biol Chem. 1973 Dec;37(12):2735–2741. https://doi.org/10.1080/00021369.1973.10861086WatanabeYMoritaM.Effect of glucose on the uricase formation by Streptomyces sp. Agric Biol Chem. 1973Dec;37(12):2735–2741. https://doi.org/10.1080/00021369.1973.10861086Search in Google Scholar
Wu XW, Lee CC, Muzny DM, Caskey CT. Urate oxidase: Primary structure and evolutionary implications. Proc Natl Acad Sci USA. 1989 Dec;86(23):9412–9416. https://doi.org/10.1073/pnas.86.23.9412WuXWLeeCCMuznyDMCaskeyCT.Urate oxidase: Primary structure and evolutionary implications. Proc Natl Acad Sci USA. 1989Dec;86(23):9412–9416. https://doi.org/10.1073/pnas.86.23.9412Search in Google Scholar
Xiao J, Zhang XL, Fu C, Han R, Chen W, Lu Y, Ye Z. Soluble uric acid increases NALP3 inflammasome and interleukin-1ß expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med. 2015 May; 35(5):1347–1354. https://doi.org/10.3892/ijmm.2015.2148XiaoJZhangXLFuCHanRChenWLuYYeZ.Soluble uric acid increases NALP3 inflammasome and interleukin-1ß expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int J Mol Med. 2015May; 35(5):1347–1354. https://doi.org/10.3892/ijmm.2015.2148Search in Google Scholar
Xu X, Hu J, Song N, Chen R, Zhang T, Ding X. Hyperuricemia increases the risk of acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2017 Jan;18(1):27. https://doi.org/10.1186/s12882-016-0433-1XuXHuJSongNChenRZhangTDingX.Hyperuricemia increases the risk of acute kidney injury: A systematic review and meta-analysis. BMC Nephrol. 2017Jan;18(1):27. https://doi.org/10.1186/s12882-016-0433-1Search in Google Scholar
Yang X, Yuan Y, Zhan CG, Liao F. Uricases as therapeutic agents to treat refractory gout: Current states and future directions. Drug Dev Res. 2012 Mar;73(2):66–72. https://doi.org/10.1002/ddr.20493YangXYuanYZhanCGLiaoF.Uricases as therapeutic agents to treat refractory gout: Current states and future directions. Drug Dev Res. 2012Mar;73(2):66–72. https://doi.org/10.1002/ddr.20493Search in Google Scholar
Yokoyama S, Ogawa A, Obayashi A. Rapid extraction of uricase from Candida utilis cells by use of reducing agent plus surfactant. Enzyme Microb Technol. 1988 Jan;10(1):52–55. https://doi.org/10.1016/0141-0229(88)90099-3YokoyamaSOgawaAObayashiA.Rapid extraction of uricase from Candida utilis cells by use of reducing agent plus surfactant. Enzyme Microb Technol. 1988Jan;10(1):52–55. https://doi.org/10.1016/0141-0229(88)90099-3Search in Google Scholar
Zhou XL, Ma XH, Sun GQ, Li X, Guo KP. Isolation of a thermostable uricase-producing bacterium and study on its enzyme production conditions. Process Biochem. 2005 Dec;40(12):3749–3753. https://doi.org/10.1016/j.procbio.2005.05.002ZhouXLMaXHSunGQLiXGuoKP.Isolation of a thermostable uricase-producing bacterium and study on its enzyme production conditions. Process Biochem. 2005Dec;40(12):3749–3753. https://doi.org/10.1016/j.procbio.2005.05.002Search in Google Scholar
Zhu T, Chen H, Yang L, Liu Y, Li W, Sun W. Characterization and Cys-directed mutagenesis of urate oxidase from Bacillus subtilis BS04. Biologia. 2022 Jan;77:290–301. https://doi.org/10.1007/s11756-021-00941-4ZhuTChenHYangLLiuYLiWSunW.Characterization and Cys-directed mutagenesis of urate oxidase from Bacillus subtilis BS04. Biologia. 2022Jan;77:290–301. https://doi.org/10.1007/s11756-021-00941-4Search in Google Scholar