Acceso abierto

Comparative Transcriptome Analysis Reveals the Molecular Mechanisms of Acetic Acid Reduction by Adding NaHSO3 in Actinobacillus succinogenes GXAS137


Cite

Ahn JH, Jang YS, Lee SY. Production of succinic acid by metabolically engineered microorganisms. Curr Opin Biotechnol. 2016 Dec;42:54–66. https://doi.org/10.1016/j.copbio.2016.02.034 Ahn JH Jang YS Lee SY. Production of succinic acid by metabolically engineered microorganisms . Curr Opin Biotechnol . 2016 Dec ; 42 : 54 66 . https://doi.org/10.1016/j.copbio.2016.02.034 Search in Google Scholar

Almqvist H, Pateraki C, Alexandri M, Koutinas A, Lidén G. Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars. J Ind Microbiol Biotechnol. 2016 Aug;43(8):1117–1130. https://doi.org/10.1007/s10295-016-1787-x Almqvist H Pateraki C Alexandri M Koutinas A Lidén G. Succinic acid production by Actinobacillus succinogenes from batch fermentation of mixed sugars . J Ind Microbiol Biotechnol . 2016 Aug ; 43 ( 8 ): 1117 1130 . https://doi.org/10.1007/s10295-016-1787-x Search in Google Scholar

Arocho A, Chen B, Ladanyi M, Pan Q. Validation of the 2–ΔΔCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts. Diagn Mol Pathol. 2006 Mar;15(1):56–61. https://doi.org/10.1097/00019606-200603000-00009 Arocho A Chen B Ladanyi M Pan Q. Validation of the 2–ΔΔCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts . Diagn Mol Pathol . 2006 Mar ; 15 ( 1 ): 56 61 . https://doi.org/10.1097/00019606-200603000-00009 Search in Google Scholar

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;25(1):25–29. https://doi.org/10.1038/75556 Ashburner M Ball CA Blake JA Botstein D Butler H Cherry JM Davis AP Dolinski K Dwight SS Eppig JT Gene ontology: tool for the unification of biology. The Gene Ontology Consortium . Nat Genet . 2000 May ; 25 ( 1 ): 25 29 . https://doi.org/10.1038/75556 Search in Google Scholar

Bradfield MFA, Nicol W. Continuous succinic acid production from xylose by Actinobacillus succinogenes. Bioprocess Biosyst Eng. 2016 Feb;39(2):233–244. https://doi.org/10.1007/s00449-015-1507-3 Bradfield MFA Nicol W. Continuous succinic acid production from xylose by Actinobacillus succinogenes . Bioprocess Biosyst Eng . 2016 Feb ; 39 ( 2 ): 233 244 . https://doi.org/10.1007/s00449-015-1507-3 Search in Google Scholar

Brzostek A, Gąsior F, Lach J, Żukowska L, Lechowicz E, Korycka-Machała M, Strapagiel D, Dziadek J. ATP-dependent ligases and AEP primases affect the profile and frequency of mutations in Mycobacteria under oxidative stress. Genes. 2021 Apr;12(4):547. https://doi.org/10.3390/genes12040547 Brzostek A Gąsior F Lach J Żukowska L Lechowicz E Korycka-Machała M Strapagiel D Dziadek J. ATP-dependent ligases and AEP primases affect the profile and frequency of mutations in Mycobacteria under oxidative stress . Genes . 2021 Apr ; 12 ( 4 ): 547 . https://doi.org/10.3390/genes12040547 Search in Google Scholar

Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021 Jul;49(W1):W317–W325. https://doi.org/10.1093/nar/gkab447 Bu D Luo H Huo P Wang Z Zhang S He Z Wu Y Zhao L Liu J Guo J KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis . Nucleic Acids Res . 2021 Jul ; 49 ( W1 ): W317 W325 . https://doi.org/10.1093/nar/gkab447 Search in Google Scholar

Chang IS, Kim BH, Shin PK. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation. Appl Environ Microbiol. 1997 Jan;63(1):1–6. https://doi.org/10.1128/aem.63.1.1-6.1997 Chang IS Kim BH Shin PK. Use of sulfite and hydrogen peroxide to control bacterial contamination in ethanol fermentation . Appl Environ Microbiol . 1997 Jan ; 63 ( 1 ): 1 6 . https://doi.org/10.1128/aem.63.1.1-6.1997 Search in Google Scholar

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018 Sep 1;34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560 Chen S Zhou Y Chen Y Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor . Bioinformatics . 2018 Sep 1 ; 34 ( 17 ): i884 i890 . https://doi.org/10.1093/bioinformatics/bty560 Search in Google Scholar

Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta.2023;2(2):e107. https://doi.org/10.1002/imt2.107 Chen S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp . iMeta . 2023 ; 2 ( 2 ): e107 . https://doi.org/10.1002/imt2.107 Search in Google Scholar

Chiang YY, Nagarajan D, Lo YC, Chen CY, Ng IS, Chang CH, Lee DJ, Chang JS. Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass. Bioresour Technol. 2021 Dec;342:126014. https://doi.org/10.1016/j.biortech.2021.126014 Chiang YY Nagarajan D Lo YC Chen CY Ng IS Chang CH Lee DJ Chang JS. Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass . Bioresour Technol . 2021 Dec ; 342 : 126014 . https://doi.org/10.1016/j.biortech.2021.126014 Search in Google Scholar

Christensen QH, Cronan JE. Lipoic acid synthesis: A new family of octanoyltransferases generally annotated as lipoate protein ligases. Biochemistry. 2010 Nov;49(46):10024–10036. https://doi.org/10.1021/bi101215f Christensen QH Cronan JE. Lipoic acid synthesis: A new family of octanoyltransferases generally annotated as lipoate protein ligases . Biochemistry . 2010 Nov ; 49 ( 46 ): 10024 10036 . https://doi.org/10.1021/bi101215f Search in Google Scholar

Danson MJ, Hale G, Perham RN. The role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli. Bio-chem J. 1981 Dec;199(3):505–511. https://doi.org/10.1042/bj1990505 Danson MJ Hale G Perham RN. The role of lipoic acid residues in the pyruvate dehydrogenase multienzyme complex of Escherichia coli . Bio-chem J . 1981 Dec ; 199 ( 3 ): 505 511 . https://doi.org/10.1042/bj1990505 Search in Google Scholar

Dessie W, Xin F, Zhang W, Jiang Y, Wu H, Ma J, Jiang M. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Appl Microbiol Biotechnol. 2018 Dec;102(23):9893–9910. https://doi.org/10.1007/s00253-018-9379-5 Dessie W Xin F Zhang W Jiang Y Wu H Ma J Jiang M. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes . Appl Microbiol Biotechnol . 2018 Dec ; 102 ( 23 ): 9893 9910 . https://doi.org/10.1007/s00253-018-9379-5 Search in Google Scholar

Eikmanns BJ, Blombach B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: An attractive target for metabolic engineering. J Biotechnol. 2014 Dec 20;192:339–345. https://doi.org/10.1016/j.jbiotec.2013.12.019 Eikmanns BJ Blombach B. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: An attractive target for metabolic engineering . J Biotechnol . 2014 Dec 20 ; 192 : 339 345 . https://doi.org/10.1016/j.jbiotec.2013.12.019 Search in Google Scholar

Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol. 2019 May; 39(4):571–586. https://doi.org/10.1080/07388551.2019.1592105 Ferone M Raganati F Olivieri G Marzocchella A. Bioreactors for succinic acid production processes . Crit Rev Biotechnol . 2019 May ; 39 ( 4 ): 571 586 . https://doi.org/10.1080/07388551.2019.1592105 Search in Google Scholar

Freeman GG, Donald GMS. Fermentation processes leading to glycerol. I. The influence of certain variables on glycerol formation in the presence of sulfites. Appl Microbiol. 1957 Jul;5(4):197–210. https://doi.org/10.1128/am.5.4.197-210.1957 Freeman GG Donald GMS. Fermentation processes leading to glycerol . I. The influence of certain variables on glycerol formation in the presence of sulfites. Appl Microbiol . 1957 Jul ; 5 ( 4 ): 197 210 . https://doi.org/10.1128/am.5.4.197-210.1957 Search in Google Scholar

Gene Ontology Consortium; Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, Hill DP, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023 May 4;224(1):iyad031. https://doi.org/10.1093/genetics/iyad031 Gene Ontology Consortium Aleksander SA Balhoff J Carbon S Cherry JM Drabkin HJ Ebert D Feuermann M Gaudet P Harris NL Hill DP The Gene Ontology knowledgebase in 2023 . Genetics . 2023 May 4 ; 224 ( 1 ): iyad031 . https://doi.org/10.1093/genetics/iyad031 Search in Google Scholar

Guarnieri MT, Chou YC, Salvachúa D, Mohagheghi A, St John PC, Peterson DJ, Bomble YJ, Beckham GT. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis. Appl Environ Microbiol. 2017 Aug;83(17):e00996–e17. https://doi.org/10.1128/AEM.00996-17 Guarnieri MT Chou YC Salvachúa D Mohagheghi A St John PC Peterson DJ Bomble YJ Beckham GT. Metabolic engineering of Actinobacillus succinogenes provides insights into succinic acid biosynthesis . Appl Environ Microbiol . 2017 Aug ; 83 ( 17 ): e00996 e17 . https://doi.org/10.1128/AEM.00996-17 Search in Google Scholar

Hernández-Plaza A, Szklarczyk D, Botas J, Cantalapiedra CP, Giner-Lamia J, Mende DR, Kirsch R, Rattei T, Letunic I, Jensen LJ, et al. eggNOG 6.0: enabling comparative genomics across 12 535 organisms. Nucleic Acids Res. 2023 Jan 6;51(D1):D389–D394. https://doi.org/10.1093/nar/gkac1022 Hernández-Plaza A Szklarczyk D Botas J Cantalapiedra CP Giner-Lamia J Mende DR Kirsch R Rattei T Letunic I Jensen LJ eggNOG 6.0: enabling comparative genomics across 12 535 organisms . Nucleic Acids Res . 2023 Jan 6 ; 51 ( D1 ): D389 D394 . https://doi.org/10.1093/nar/gkac1022 Search in Google Scholar

Irwin SV, Fisher P, Graham E, Malek A, Robidoux A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS One. 2017 Oct;12(10): e0186629. https://doi.org/10.1371/journal.pone.0186629 Irwin SV Fisher P Graham E Malek A Robidoux A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food . PLoS One . 2017 Oct ; 12 ( 10 ): e0186629 . https://doi.org/10.1371/journal.pone.0186629 Search in Google Scholar

Isogai S, Takagi H. Enhancement of lysine biosynthesis confers high-temperature stress tolerance to Escherichia coli cells. Appl Microbiol Biotechnol. 2021 Sep;105(18):6899–6908. https://doi.org/10.1007/s00253-021-11519-0 Isogai S Takagi H. Enhancement of lysine biosynthesis confers high-temperature stress tolerance to Escherichia coli cells . Appl Microbiol Biotechnol . 2021 Sep ; 105 ( 18 ): 6899 6908 . https://doi.org/10.1007/s00253-021-11519-0 Search in Google Scholar

Jansen MLA, van Gulik WM. Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol. 2014 Dec;30:190–197. https://doi.org/10.1016/j.copbio.2014.07.003 Jansen MLA van Gulik WM. Towards large scale fermentative production of succinic acid . Curr Opin Biotechnol . 2014 Dec ; 30 : 190 197 . https://doi.org/10.1016/j.copbio.2014.07.003 Search in Google Scholar

Joshi RV, Schindler BD, McPherson NR, Tiwari K, Vieille C. Development of a markerless knockout method for Actinobacillus succinogenes. Appl Environ Microbiol. 2014 May;80(10):3053–3061. https://doi.org/10.1128/AEM.00492-14 Joshi RV Schindler BD McPherson NR Tiwari K Vieille C. Development of a markerless knockout method for Actinobacillus succinogenes . Appl Environ Microbiol . 2014 May ; 80 ( 10 ): 3053 3061 . https://doi.org/10.1128/AEM.00492-14 Search in Google Scholar

Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023 Jan;51(D1):D587-D592 https://doi.org/10.1093/nar/gkac963 Kanehisa M Furumichi M Sato Y Kawashima M Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes . Nucleic Acids Res . 2023 Jan ; 51 ( D1 ) : D587 D592 https://doi.org/10.1093/nar/gkac963 Search in Google Scholar

Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan;28(1):27–30. https://doi.org/10.1093/nar/28.1.27 Kanehisa M Goto S. KEGG: kyoto encyclopedia of genes and genomes . Nucleic Acids Res . 2000 Jan ; 28 ( 1 ): 27 30 . https://doi.org/10.1093/nar/28.1.27 Search in Google Scholar

Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019 Nov;28(11):1947–1951. https://doi.org/10.1002/pro.3715 Kanehisa M. Toward understanding the origin and evolution of cellular organisms . Protein Sci . 2019 Nov ; 28 ( 11 ): 1947 1951 . https://doi.org/10.1002/pro.3715 Search in Google Scholar

Kertesz MA. Bacterial transporters for sulfate and organosulfur compounds. Res Microbiol. 2001 Apr;152(3–4):279–290. https://doi.org/10.1016/S0923-2508(01)01199-8 Kertesz MA. Bacterial transporters for sulfate and organosulfur compounds . Res Microbiol . 2001 Apr ; 152 ( 3–4 ): 279 290 . https://doi.org/10.1016/S0923-2508(01)01199-8 Search in Google Scholar

Kim SN, Cho YB, Park JW, Kim OB. Adaptation of Methanosarcina barkeri 227 as acetate scavenger for succinate fermentation by Actinobacillus succinogenes. Appl Microbiol Biotechnol. 2020 May; 104(10):4483–4492. https://doi.org/10.1007/s00253-020-10494-2 Kim SN Cho YB Park JW Kim OB. Adaptation of Methanosarcina barkeri 227 as acetate scavenger for succinate fermentation by Actinobacillus succinogenes . Appl Microbiol Biotechnol . 2020 May ; 104 ( 10 ): 4483 4492 . https://doi.org/10.1007/s00253-020-10494-2 Search in Google Scholar

Klopfenstein DV, Zhang L, Pedersen BS, Ramírez F, Warwick Vesztrocy A, Naldi A, Mungall CJ, Yunes JM, Botvinnik O, Weigel M, et al. GOATOOLS: A Python library for Gene Ontology analyses. Sci Rep. 2018 Jul;8(1):10872. https://doi.org/10.1038/s41598-018-28948-z Klopfenstein DV Zhang L Pedersen BS Ramírez F Warwick Vesztrocy A Naldi A Mungall CJ Yunes JM Botvinnik O Weigel M GOATOOLS: A Python library for Gene Ontology analyses . Sci Rep . 2018 Jul ; 8 ( 1 ): 10872 . https://doi.org/10.1038/s41598-018-28948-z Search in Google Scholar

Leonardo MR, Cunningham PR, Clark DP. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli. J Bacteriol. 1993 Feb;175(3):870–878. https://doi.org/10.1128/jb.175.3.870-878.1993 Leonardo MR Cunningham PR Clark DP. Anaerobic regulation of the adhE gene, encoding the fermentative alcohol dehydrogenase of Escherichia coli . J Bacteriol . 1993 Feb ; 175 ( 3 ): 870 878 . https://doi.org/10.1128/jb.175.3.870-878.1993 Search in Google Scholar

Li S, Ma J, Li S, Chen F, Song C, Zhang H, Jiang M, Shen N. Comparative transcriptome analysis unravels the response mechanisms of Fusarium oxysporum f.sp. cubense to a biocontrol agent, Pseudomonas aeruginosa Gxun-2. Int J Mol Sci. 2022 Dec;23(23):15432. https://doi.org/10.3390/ijms232315432 Li S Ma J Li S Chen F Song C Zhang H Jiang M Shen N. Comparative transcriptome analysis unravels the response mechanisms of Fusarium oxysporum f.sp. cubense to a biocontrol agent, Pseudomonas aeruginosa Gxun-2 . Int J Mol Sci . 2022 Dec ; 23 ( 23 ): 15432 . https://doi.org/10.3390/ijms232315432 Search in Google Scholar

Li Z, Lou Y, Ding J, Liu BF, Xie GJ, Ren NQ, Xing D. Metabolic regulation of ethanol-type fermentation of anaerobic acidogenesis at different pH based on transcriptome analysis of Ethanoligenens harbinense. Biotechnol Biofuels. 2020 Dec;13(1):101. https://doi.org/10.1186/s13068-020-01740-w Li Z Lou Y Ding J Liu BF Xie GJ Ren NQ Xing D. Metabolic regulation of ethanol-type fermentation of anaerobic acidogenesis at different pH based on transcriptome analysis of Ethanoligenens harbinense . Biotechnol Biofuels . 2020 Dec ; 13 ( 1 ): 101 . https://doi.org/10.1186/s13068-020-01740-w Search in Google Scholar

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8 Love MI Huber W Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 . Genome Biol . 2014 ; 15 ( 12 ): 550 . https://doi.org/10.1186/s13059-014-0550-8 Search in Google Scholar

Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014 Jan;66:75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036 Lu J Holmgren A. The thioredoxin antioxidant system . Free Radic Biol Med . 2014 Jan ; 66 : 75 87 . https://doi.org/10.1016/j.freeradbiomed.2013.07.036 Search in Google Scholar

Mara P, Fragiadakis GS, Gkountromichos F, Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae. Microb Cell Fact. 2018 Dec;17(1):170. https://doi.org/10.1186/s12934-018-1018-4 Mara P Fragiadakis GS Gkountromichos F Alexandraki D. The pleiotropic effects of the glutamate dehydrogenase (GDH) pathway in Saccharomyces cerevisiae . Microb Cell Fact . 2018 Dec ; 17 ( 1 ): 170 . https://doi.org/10.1186/s12934-018-1018-4 Search in Google Scholar

Mayr JA, Feichtinger RG, Tort F, Ribes A, Sperl W. Lipoic acid biosynthesis defects. J Inherit Metab Dis. 2014 Jul;37(4):553–563. https://doi.org/10.1007/s10545-014-9705-8 Mayr JA Feichtinger RG Tort F Ribes A Sperl W. Lipoic acid biosynthesis defects . J Inherit Metab Dis . 2014 Jul ; 37 ( 4 ): 553 563 . https://doi.org/10.1007/s10545-014-9705-8 Search in Google Scholar

McKinlay JB, Shachar-Hill Y, Zeikus JG, Vieille C. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab Eng. 2007 Mar;9(2):177–192. https://doi.org/10.1016/j.ymben.2006.10.006 McKinlay JB Shachar-Hill Y Zeikus JG Vieille C. Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers . Metab Eng . 2007 Mar ; 9 ( 2 ): 177 192 . https://doi.org/10.1016/j.ymben.2006.10.006 Search in Google Scholar

McKinlay JB, Vieille C. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metab Eng. 2008 Jan;10(1):55–68. https://doi.org/10.1016/j.ymben.2007.08.004 McKinlay JB Vieille C. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations . Metab Eng . 2008 Jan ; 10 ( 1 ): 55 68 . https://doi.org/10.1016/j.ymben.2007.08.004 Search in Google Scholar

McKinlay JB, Zeikus JG, Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium. Appl Environ Microbiol. 2005 Nov;71(11):6651–6656. https://doi.org/10.1128/AEM.71.11.6651-6656.2005 McKinlay JB Zeikus JG Vieille C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined growth medium . Appl Environ Microbiol . 2005 Nov ; 71 ( 11 ): 6651 6656 . https://doi.org/10.1128/AEM.71.11.6651-6656.2005 Search in Google Scholar

Mo W, Wang M, Zhan R, Yu Y, He Y, Lu H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. Biotechnol Biofuels 2019 Dec;12(1):63. https://doi.org/10.1186/s13068-019-1393-z Mo W Wang M Zhan R Yu Y He Y Lu H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways . Biotechnol Biofuels 2019 Dec ; 12 ( 1 ): 63 . https://doi.org/10.1186/s13068-019-1393-z Search in Google Scholar

Mohd Kamal K, Mahamad Maifiah MH, Zhu Y, Abdul Rahim N, Hashim YZH, Abdullah Sani MS. Isotopic tracer for absolute quantification of metabolites of the pentose phosphate pathway in bacteria. Metabolites. 2022 Nov;12(11):1085. https://doi.org/10.3390/metabo12111085 Mohd Kamal K Mahamad Maifiah MH Zhu Y Abdul Rahim N Hashim YZH Abdullah Sani MS. Isotopic tracer for absolute quantification of metabolites of the pentose phosphate pathway in bacteria . Metabolites . 2022 Nov ; 12 ( 11 ): 1085 . https://doi.org/10.3390/metabo12111085 Search in Google Scholar

Murphy GE, Jensen GJ. Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes. Structure. 2005 Dec;13(12):1765–1773. https://doi.org/10.1016/j.str.2005.08.016 Murphy GE Jensen GJ. Electron cryotomography of the E. coli pyruvate and 2-oxoglutarate dehydrogenase complexes . Structure 2005 Dec ; 13 ( 12 ): 1765 1773 . https://doi.org/10.1016/j.str.2005.08.016 Search in Google Scholar

Nag A, St John PCS, Crowley MF, Bomble YJ. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes. PLoS One. 2018;13(1):e0189144. https://doi.org/10.1371/journal.pone.0189144 Nag A St John PCS Crowley MF Bomble YJ. Prediction of reaction knockouts to maximize succinate production by Actinobacillus succinogenes . PLoS One . 2018 ; 13 ( 1 ): e0189144 . https://doi.org/10.1371/journal.pone.0189144 Search in Google Scholar

Omwene PI, Yağcioğlu M, Öcal-Sarihan ZB, Ertan F, Keris-Sen ÜD, Karagunduz A, Keskinler B. Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition. 3 Biotech. 2021 Aug;11(8):389. https://doi.org/10.1007/s13205-021-02939-w Omwene PI Yağcioğlu M Öcal-Sarihan ZB Ertan F Keris-Sen ÜD Karagunduz A Keskinler B. Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition . 3 Biotech . 2021 Aug ; 11 ( 8 ): 389 . https://doi.org/10.1007/s13205-021-02939-w Search in Google Scholar

Patel MS, Nemeria NS, Furey W, Jordan F. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J Biol Chem. 2014 Jun;289(24):16615–16623. https://doi.org/10.1074/jbc.R114.563148 Patel MS Nemeria NS Furey W Jordan F. The pyruvate dehydrogenase complexes: Structure-based function and regulation . J Biol Chem . 2014 Jun ; 289 ( 24 ): 16615 16623 . https://doi.org/10.1074/jbc.R114.563148 Search in Google Scholar

Pateraki C, Skliros D, Flemetakis E, Koutinas A. Succinic acid production from pulp and paper industry waste: A transcriptomic approach. J Biotechnol. 2021 Jan;325:250–260. https://doi.org/10.1016/j.jbiotec.2020.10.015 Pateraki C Skliros D Flemetakis E Koutinas A. Succinic acid production from pulp and paper industry waste: A transcriptomic approach . J Biotechnol . 2021 Jan ; 325 : 250 260 . https://doi.org/10.1016/j.jbiotec.2020.10.015 Search in Google Scholar

Pavlova SI, Jin L, Gasparovich SR, Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci. Microbiology. 2013 Jul;159(Pt_7):1437–1446. https://doi.org/10.1099/mic.0.066258-0 Pavlova SI Jin L Gasparovich SR Tao L. Multiple alcohol dehydrogenases but no functional acetaldehyde dehydrogenase causing excessive acetaldehyde production from ethanol by oral streptococci . Microbiology . 2013 Jul ; 159 ( Pt_7 ): 1437 1446 . https://doi.org/10.1099/mic.0.066258-0 Search in Google Scholar

Shen N, Li S, Li S, Wang Y, Zhang H, Jiang M. Reduced acetic acid formation using NaHSO3 as a steering agent by Actinobacillus succinogenes GXAS137. J Biosci Bioeng. 2023 Mar;135(3):203–209 https://doi.org/10.1016/j.jbiosc.2022.12.007 Shen N Li S Li S Wang Y Zhang H Jiang M. Reduced acetic acid formation using NaHSO3 as a steering agent by Actinobacillus succinogenes GXAS137 . J Biosci Bioeng . 2023 Mar ; 135 ( 3 ): 203 209 https://doi.org/10.1016/j.jbiosc.2022.12.007 Search in Google Scholar

Shen N, Wang Q, Qin Y, Zhu J, Zhu Q, Mi H, Wei Y, Huang R. Optimization of succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137 using response surface methodology (RSM). Food Sci Biotechnol. 2014 Dec;23(6):1911–1919. https://doi.org/10.1007/s10068-014-0261-7 Shen N Wang Q Qin Y Zhu J Zhu Q Mi H Wei Y Huang R Optimization of succinic acid production from cane molasses by Actinobacillus succinogenes GXAS137 using response surface methodology (RSM) . Food Sci Biotechnol . 2014 Dec ; 23 ( 6 ): 1911 1919 . https://doi.org/10.1007/s10068-014-0261-7 Search in Google Scholar

Shen N, Wang Q, Zhu J, Qin Y, Liao S, Li Y, Zhu Q, Jin Y, Du L, Huang R. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137. Bioresour Technol. 2016 Jul;211:307–312. https://doi.org/10.1016/j.biortech.2016.03.036 Shen N Wang Q Zhu J Qin Y Liao S Li Y Zhu Q Jin Y Du L Huang R. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137. . Bioresour Technol . 2016 Jul ; 211 : 307 312 . https://doi.org/10.1016/j.biortech.2016.03.036 Search in Google Scholar

Shen N, Zhang H, Qin Y, Wang Q, Zhu J, Li Y, Jiang MG, Huang R Efficient production of succinic acid from duckweed (Landolti punctata) hydrolysate by Actinobacillus succinogenes GXAS137 Bioresour Technol. 2018 Feb;250:35–42. https://doi.org/10.1016/j.biortech.2017.09.208 Shen N Zhang H Qin Y Wang Q Zhu J Li Y Jiang MG Huang R Efficient production of succinic acid from duckweed (Landolti punctata) hydrolysate by Actinobacillus succinogenes GXAS137 Bioresour Technol . 2018 Feb ; 250 : 35 42 . https://doi.org/10.1016/j.biortech.2017.09.208 Search in Google Scholar

Sirover MA. Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol. 2014 Dec;57:20–26. https://doi.org/10.1016/j.biocel.2014.09.026 Sirover MA. Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity . Int J Biochem Cell Biol . 2014 Dec ; 57 : 20 26 . https://doi.org/10.1016/j.biocel.2014.09.026 Search in Google Scholar

Škerlová J, Berndtsson J, Nolte H, Ott M, Stenmark P. Structure of the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion. Nat Commun. 2021 Sep;12(1):5277. https://doi.org/10.1038/s41467-021-25570-y Škerlová J Berndtsson J Nolte H Ott M Stenmark P. Structure c the native pyruvate dehydrogenase complex reveals the mechanism of substrate insertion . Nat Commun . 2021 Sep ; 12 ( 1 ): 5277 . https://doi.org/10.1038/s41467-021-25570-y Search in Google Scholar

Solmonson A, DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation. J Biol Chem. 2018 May;293(20):7522–7530. https://doi.org/10.1074/jbc.TM117.000259 Solmonson A DeBerardinis RJ. Lipoic acid metabolism and mitochondrial redox regulation . J Biol Chem . 2018 May ; 293 ( 20 ): 7522 7530 . https://doi.org/10.1074/jbc.TM117.000259 Search in Google Scholar

Taherzadeh MJ, Adler L, Lidén G. Strategies for enhancing fermentative production of glycerol – A review. Enzyme Microb Technol. 2002 Jul;31(1–2):53–66. https://doi.org/10.1016/S0141-0229(02)00069-8 Taherzadeh MJ Adler L Lidén G. Strategies for enhancing fermentative production of glycerol – A review . Enzyme Microb Technol . 2002 Jul ; 31 ( 1–2 ): 53 66 . https://doi.org/10.1016/S0141-0229(02)00069-8 Search in Google Scholar

Taherzadeh MJ, Lidén G, Gustafsson L, Niklasson C. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1996 Sep;46(2):176–182. https://doi.org/10.1007/s002530050801 Taherzadeh MJ Lidén G Gustafsson L Niklasson C. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae . Appl Microbiol Biotechnol . 1996 Sep ; 46 ( 2 ): 176 182 . https://doi.org/10.1007/s002530050801 Search in Google Scholar

Tan JP, Luthfi AAI, Manaf SFA, Wu TY, Jahim JM. Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice. J CO2 Util. 2018;26:595–601. https://doi.org/10.1016/j.jcou.2018.06.006 Tan JP Luthfi AAI Manaf SFA Wu TY Jahim JM. Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice . J CO2 Util . 2018 ; 26 : 595 601 . https://doi.org/10.1016/j.jcou.2018.06.006 Search in Google Scholar

Tong LL, Wang Y, Du YH, Yuan L, Liu MZ, Mu XY, Chen ZL, Zhang YD, He SJ, Li XJ, et al. Transcriptomic analysis of morphology regulatory mechanisms of microparticles to Paraisaria dubia in submerged fermentation. Appl Biochem Biotechnol. 2022 Oct; 194(10):4333–4347. https://doi.org/10.1007/s12010-022-03820-z Tong LL Wang Y Du YH Yuan L Liu MZ Mu XY Chen ZL Zhang YD He SJ Li XJ Transcriptomic analysis of morphology regulatory mechanisms of microparticles to Paraisaria dubia in submerged fermentation . Appl Biochem Biotechnol . 2022 Oct ; 194 ( 10 ): 4333 4347 . https://doi.org/10.1007/s12010-022-03820-z Search in Google Scholar

Tsuji K, Yoon KS, Ogo S. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp. S-77. J Biosci Bioeng. 2016 Mar;121(3):253–258. https://doi.org/10.1016/j.jbiosc.2015.06.019 Tsuji K Yoon KS Ogo S. Biochemical characterization of a bifunctional acetaldehyde-alcohol dehydrogenase purified from a facultative anaerobic bacterium Citrobacter sp . S-77. J Biosci Bioeng . 2016 Mar ; 121 ( 3 ): 253 258 . https://doi.org/10.1016/j.jbiosc.2015.06.019 Search in Google Scholar

Valadi H, Valadi Å, Ansell R, Gustafsson L, Adler L, Norbeck J, Blomberg A. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet. 2004 Feb;45(2): 90–95. https://doi.org/10.1007/s00294-003-0469-1 Valadi H Valadi Å Ansell R Gustafsson L Adler L Norbeck J Blomberg A. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1) . Curr Genet . 2004 Feb ; 45 ( 2 ): 90 95 . https://doi.org/10.1007/s00294-003-0469-1 Search in Google Scholar

Wang C, Ren X, Yu C, Wang J, Wang L, Zhuge X, Liu X. Physiological and transcriptional responses of Streptomyces albulus to acid stress in the biosynthesis of ε-poly-L-lysine. Front Microbiol. 2020 Jun;11:1379. https://doi.org/10.3389/fmicb.2020.01379 Wang C Ren X Yu C Wang J Wang L Zhuge X Liu X. Physiological and transcriptional responses of Streptomyces albulus to acid stress in the biosynthesis of ε-poly-L-lysine . Front Microbiol . 2020 Jun ; 11 : 1379 . https://doi.org/10.3389/fmicb.2020.01379 Search in Google Scholar

Wang L, Hong H, Zhang C, Huang Z, Guo H. Transcriptome analysis of Komagataeibacter europaeus CGMCC 20445 responses to different acidity levels during acetic acid fermentation. Pol J Microbiol. 2021 Sep;70(3):305–313. https://doi.org/10.33073/pjm-2021-027 Wang L Hong H Zhang C Huang Z Guo H. Transcriptome analysis of Komagataeibacter europaeus CGMCC 20445 responses to different acidity levels during acetic acid fermentation . Pol J Microbiol . 2021 Sep ; 70 ( 3 ): 305 313 . https://doi.org/10.33073/pjm-2021-027 Search in Google Scholar

Zhang H, Shen N, Qin Y, Zhu J, Li Y, Wu J, Jiang MG. Complete genome sequence of Actinobacillus succinogenes GXAS137, a highly efficient producer of succinic acid. Genome Announc. 2018 Feb; 6(8):e01562–17. https://doi.org/10.1128/genomeA.01562-17 Zhang H Shen N Qin Y Zhu J Li Y Wu J Jiang MG. Complete genome sequence of Actinobacillus succinogenes GXAS137, a highly efficient producer of succinic acid . Genome Announc . 2018 Feb ; 6 ( 8 ): e01562 17 . https://doi.org/10.1128/genomeA.01562-17 Search in Google Scholar

Zhang X, Ruan Y, Liu W, Chen Q, Gu L, Guo A. Transcriptome analysis of gene expression in Dermacoccus abyssi HZAU 226 under lysozyme stress. Microorganisms. 2020 May;8(5):707. https://doi.org/10.3390/microorganisms8050707 Zhang X Ruan Y Liu W Chen Q Gu L Guo A. Transcriptome analysis of gene expression in Dermacoccus abyssi HZAU 226 under lysozyme stress . Microorganisms . 2020 May ; 8 ( 5 ): 707 . https://doi.org/10.3390/microorganisms8050707 Search in Google Scholar

Zhuang W, Balasubramanian N, Wang L, Wang Q, McDermott TR, Copié V, Wang G, Bothner B. Arsenate-induced changes in bacterial metabolite and lipid pools during phosphate stress. Appl Environ Microbiol. 2021 Feb;87(6):e02261–20. https://doi.org/10.1128/AEM.02261-20 Zhuang W Balasubramanian N Wang L Wang Q McDermott TR Copié V Wang G Bothner B. Arsenate-induced changes in bacterial metabolite and lipid pools during phosphate stress . Appl Environ Microbiol . 2021 Feb ; 87 ( 6 ): e02261 20 . https://doi.org/10.1128/AEM.02261-20 Search in Google Scholar

eISSN:
2544-4646
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology