Cite

Agunbiade MO, Van Heerden E, Pohl CH, Ashafa AT. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol. 2017 Dec;17(1):51. https://doi.org/10.1186/s12896-017-0375-0AgunbiadeMOVan HeerdenEPohlCHAshafaAT. Flocculating performance of a bioflocculant produced by Arthrobacter humicola in sewage waste water treatment. BMC Biotechnol.2017Dec;17(1):51. https://doi.org/10.1186/s12896-017-0375-010.1186/s12896-017-0375-0546902128606076Search in Google Scholar

Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, et al. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015 Dec;528(7582):364–369. https://doi.org/10.1038/nature16192BaiYMüllerDBSrinivasGGarrido-OterRPotthoffERottMDombrowskiNMünchPCSpaepenSRemus-EmsermannM. Functional overlap of the Arabidopsis leaf and root microbiota. Nature.2015Dec;528(7582):364369. https://doi.org/10.1038/nature1619210.1038/nature1619226633631Search in Google Scholar

Bailly A, Weisskopf L. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav. 2012 Jan;7(1):79–85. https://doi.org/10.4161/psb.7.1.18418BaillyAWeisskopfL. The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav.2012Jan;7(1):7985. https://doi.org/10.4161/psb.7.1.1841810.4161/psb.7.1.18418335737622301973Search in Google Scholar

Bodelier PLE. Toward understanding, managing, and protecting microbial ecosystems. Front Microbiol. 2011;2:80. https://doi.org/10.3389/fmicb.2011.00080BodelierPLE. Toward understanding, managing, and protecting microbial ecosystems. Front Microbiol.2011;2:80. https://doi.org/10.3389/fmicb.2011.0008010.3389/fmicb.2011.00080312894121747797Search in Google Scholar

Bundale S, Singh J, Begde D, Nashikkar N, Upadhyay A. Rare actinobacteria: a potential source of bioactive polyketides and peptides. World J Microbiol Biotechnol. 2019 Jun;35(6):92. https://doi.org/10.1007/s11274-019-2668-zBundaleSSinghJBegdeDNashikkarNUpadhyayA. Rare actinobacteria: a potential source of bioactive polyketides and peptides. World J Microbiol Biotechnol.2019Jun;35(6):92. https://doi.org/10.1007/s11274-019-2668-z10.1007/s11274-019-2668-z31187317Search in Google Scholar

Cai Y, Tao WZ, Ma YJ, Cheng J, Zhang MY, Zhang YX. Leifsonia flava sp. nov., a novel actinobacterium isolated from the rhizosphere of Aquilegia viridiflora. J Microbiol. 2018 Aug;56(8):549–555. https://doi.org/10.1007/s12275-018-8061-zCaiYTaoWZMaYJChengJZhangMYZhangYX. Leifsonia flava sp. nov., a novel actinobacterium isolated from the rhizosphere of Aquilegia viridiflora. J Microbiol.2018Aug;56(8):549555. https://doi.org/10.1007/s12275-018-8061-z10.1007/s12275-018-8061-z30047083Search in Google Scholar

Collins T, Margesin R. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol. 2019 Apr;103(7):2857–2871. https://doi.org/10.1007/s00253-019-09659-5CollinsTMargesinR. Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol.2019Apr;103(7):28572871. https://doi.org/10.1007/s00253-019-09659-510.1007/s00253-019-09659-530729286Search in Google Scholar

Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N. A global atlas of the dominant bacteria found in soil. Science. 2018 Jan 19;359(6373):320–325. https://doi.org/10.1126/science.aap9516Delgado-BaquerizoMOliverioAMBrewerTEBenavent-GonzálezAEldridgeDJBardgettRDMaestreFTSinghBKFiererN. A global atlas of the dominant bacteria found in soil. Science.2018Jan 19;359(6373):320325. https://doi.org/10.1126/science.aap951610.1126/science.aap951629348236Search in Google Scholar

Deng N, Zheng B, Li T, Liu RH. Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties. Int J Mol Sci. 2020 Feb 11;21(4):1175. https://doi.org/10.3390/ijms21041175DengNZhengBLiTLiuRH. Assessment of the phenolic profiles, hypoglycemic activity, and molecular mechanism of different highland barley (Hordeum vulgare L.) varieties. Int J Mol Sci.2020Feb 11;21(4):1175. https://doi.org/10.3390/ijms2104117510.3390/ijms21041175707282632053943Search in Google Scholar

Fulthorpe RR, Roesch LFW, Riva A, Triplett EW. Distantly sampled soils carry few species in common. ISME J. 2008 Sep;2(9):901–910. https://doi.org/10.1038/ismej.2008.55FulthorpeRRRoeschLFWRivaATriplettEW. Distantly sampled soils carry few species in common. ISME J.2008Sep;2(9):901910. https://doi.org/10.1038/ismej.2008.5510.1038/ismej.2008.5518528413Search in Google Scholar

Furlong MA, Singleton DR, Coleman DC, Whitman WB. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol. 2002 Mar;68(3):1265–1279. https://doi.org/10.1128/AEM.68.3.1265-1279.2002FurlongMASingletonDRColemanDCWhitmanWB. Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus. Appl Environ Microbiol.2002Mar;68(3):12651279. https://doi.org/10.1128/AEM.68.3.1265-1279.200210.1128/AEM.68.3.1265-1279.200212375011872477Search in Google Scholar

Gao X, Gu YF, Nyima T, Liu GY, Liu T, Liu Y, Pubu G. Analysis of the genetic diversity and promoting functions of the culturable Actinomycetes in the rhizosphere of highland barley in Tibet. Sichuan Nongye Daxue Xuebao. 2019;37(6):777–784.GaoXGuYFNyimaTLiuGYLiuTLiuYPubuG. Analysis of the genetic diversity and promoting functions of the culturable Actinomycetes in the rhizosphere of highland barley in Tibet. Sichuan Nongye Daxue Xuebao.2019;37(6):777784.Search in Google Scholar

He Q, Wang X, He L, Yang L, Wang S, Bi Y. Alternative respiration pathway is involved in the response of highland barley to salt stress. Plant Cell Rep. 2019 Mar;38(3):295–309. https://doi.org/10.1007/s00299-018-2366-6HeQWangXHeLYangLWangSBiY. Alternative respiration pathway is involved in the response of highland barley to salt stress. Plant Cell Rep.2019Mar;38(3):295309. https://doi.org/10.1007/s00299-018-2366-610.1007/s00299-018-2366-630542981Search in Google Scholar

Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol. 2006 Jun;72(6):3832–3845. https://doi.org/10.1128/AEM.02869-05JiangHDongHZhangGYuBChapmanLRFieldsMW. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol.2006Jun;72(6):38323845. https://doi.org/10.1128/AEM.02869-0510.1128/AEM.02869-05148962016751487Search in Google Scholar

Jones SE, Elliot MA. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol. 2017 Jul;25(7):522–531. https://doi.org/10.1016/j.tim.2017.02.001JonesSEElliotMA. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol.2017Jul;25(7):522531. https://doi.org/10.1016/j.tim.2017.02.00110.1016/j.tim.2017.02.00128245952Search in Google Scholar

Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014 Feb 01;64(Pt_2):346–351. https://doi.org/10.1099/ijs.0.059774-0KimMOhHSParkSCChunJ. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol.2014Feb 01;64(Pt_2):346351. https://doi.org/10.1099/ijs.0.059774-010.1099/ijs.0.059774-024505072Search in Google Scholar

Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004 Dec;6(12):1244–1251. https://doi.org/10.1111/j.1462-2920.2004.00658.xKuklinsky-SobralJAraújoWLMendesRGeraldiIOPizzirani-KleinerAAAzevedoJL. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol.2004Dec;6(12):12441251. https://doi.org/10.1111/j.1462-2920.2004.00658.x10.1111/j.1462-2920.2004.00658.x15560822Search in Google Scholar

Kumar M, Männistö MK, van Elsas JD, Nissinen RM. Plants impact structure and function of bacterial communities in Arctic soils. Plant Soil. 2016a Feb;399(1–2):319–332. https://doi.org/10.1007/s11104-015-2702-3KumarMMännistöMKvan ElsasJDNissinenRM. Plants impact structure and function of bacterial communities in Arctic soils. Plant Soil.2016aFeb;399(1–2):319332. https://doi.org/10.1007/s11104-015-2702-310.1007/s11104-015-2702-3Search in Google Scholar

Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016b Jul;33(7):1870–1874. https://doi.org/10.1093/molbev/msw054KumarSStecherGTamuraK. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol.2016bJul;33(7):18701874. https://doi.org/10.1093/molbev/msw05410.1093/molbev/msw054821082327004904Search in Google Scholar

Kurm V, van der Putten WH, Hol WHG. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS One. 2019 Jan 10;14(1):e0210073. https://doi.org/10.1371/journal.pone.0210073KurmVvan der PuttenWHHolWHG. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS One.2019Jan 10;14(1):e0210073. https://doi.org/10.1371/journal.pone.021007310.1371/journal.pone.0210073632815130629606Search in Google Scholar

Li F, Liu S, Lu Q, Zheng H, Osterman IA, Lukyanov DA, Sergiev PV, Dontsova OA, Liu S, Ye J, et al. Studies on antibacterial activity and diversity of cultivable actinobacteria isolated from mangrove soil in Futian and Maoweihai of China. Evid Based Complement Alternat Med. 2019 Jun 09;2019:1–11. https://doi.org/10.1155/2019/3476567LiFLiuSLuQZhengHOstermanIALukyanovDASergievPVDontsovaOALiuSYeJ. Studies on antibacterial activity and diversity of cultivable actinobacteria isolated from mangrove soil in Futian and Maoweihai of China. Evid Based Complement Alternat Med.2019Jun 09;2019:111. https://doi.org/10.1155/2019/347656710.1155/2019/3476567659053031281398Search in Google Scholar

Li L, Wei K, Zheng G, Liu X, Chen S, Jiang W, Lu Y. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol. 2018 Jul 06;84(18):e00827-18. https://doi.org/10.1128/AEM.00827-18LiLWeiKZhengGLiuXChenSJiangWLuY. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl Environ Microbiol.2018Jul 06;84(18):e00827-18. https://doi.org/10.1128/AEM.00827-1810.1128/AEM.00827-18612196929980561Search in Google Scholar

Liu GH, Narsing Rao MP, Dong ZY, Wang JP, Chen Z, Liu B, Li WJ. Two novel alkaliphiles, Bacillus alkalisoli sp. nov., and Bacillus solitudinis sp. nov., isolated from saline-alkali soil. Extremophiles. 2019 Nov;23(6):759–764. https://doi.org/10.1007/s00792-019-01127-2LiuGHNarsing RaoMPDongZYWangJPChenZLiuBLiWJ. Two novel alkaliphiles, Bacillus alkalisoli sp. nov., and Bacillus solitudinis sp. nov., isolated from saline-alkali soil. Extremophiles.2019Nov;23(6):759764. https://doi.org/10.1007/s00792-019-01127-210.1007/s00792-019-01127-231538256Search in Google Scholar

Liu QH, Pan H, Da WZM, Tian Y, Liu HH, Wang C, Lu XY, Bai JP. [High-throughput analysis of bacterial diversity in highland barley cultivation soil in Lhasa] (in Chinese). J Biol. 2020;37(2):46–51.LiuQHPanHDaWZMTianYLiuHHWangCLuXYBaiJP. [High-throughput analysis of bacterial diversity in highland barley cultivation soil in Lhasa] (in Chinese). J Biol.2020;37(2):4651.Search in Google Scholar

Malard LA, Anwar MZ, Jacobsen CS, Pearce DA. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol Ecol. 2019 Sep 01;95(9):fiz128. https://doi.org/10.1093/femsec/fiz128MalardLAAnwarMZJacobsenCSPearceDA. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol Ecol.2019Sep 01;95(9):fiz128. https://doi.org/10.1093/femsec/fiz12810.1093/femsec/fiz128673639831429869Search in Google Scholar

Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol. 2009 Feb;67(2):208–218. https://doi.org/10.1111/j.1574-6941.2008.00620.xMargesinRJudMTscherkoDSchinnerF. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol.2009Feb;67(2):208218. https://doi.org/10.1111/j.1574-6941.2008.00620.x10.1111/j.1574-6941.2008.00620.x19049494Search in Google Scholar

Margesin R. Psychrophilic microorganisms in alpine soils. In: Lütz C, editor. Plants in Alpine regions. Vienna (Austria): Springer; 2012. p. 187–198.MargesinR. Psychrophilic microorganisms in alpine soils. In: LützC, editor. Plants in Alpine regions. Vienna (Austria): Springer; 2012. p. 187198.10.1007/978-3-7091-0136-0_14Search in Google Scholar

Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol. 2014 May;37(3):208–215. https://doi.org/10.1016/j.syapm.2013.12.007MousaviSAÖstermanJWahlbergNNesmeXLavireCVialLPaulinLde LajudiePLindströmK. Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol.2014May;37(3):208215. https://doi.org/10.1016/j.syapm.2013.12.00710.1016/j.syapm.2013.12.00724581678Search in Google Scholar

Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol. 2015 Mar;38(2):84–90. https://doi.org/10.1016/j.syapm.2014.12.003MousaviSAWillemsANesmeXde LajudiePLindströmK. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol.2015Mar;38(2):8490. https://doi.org/10.1016/j.syapm.2014.12.00310.1016/j.syapm.2014.12.00325595870Search in Google Scholar

Qi SS, Zhou LH, Hu JP, Liu M, Zhao H, Xiong Y. [Isolation, identification and diversity of soil bacteria in multiple regions from Tibetan Plateau] (in Chinese). Xi Nan Nong Ye Xue Bao. 2017; 30(7):1629–1635.QiSSZhouLHHuJPLiuMZhaoHXiongY. [Isolation, identification and diversity of soil bacteria in multiple regions from Tibetan Plateau] (in Chinese). Xi Nan Nong Ye Xue Bao.2017; 30(7):16291635.Search in Google Scholar

Rao S, Chan OW, Lacap-Bugler DC, Pointing SB. Radiation-tolerant bacteria isolated from high altitude soil in Tibet. Indian J Microbiol. 2016 Dec;56(4):508–512. https://doi.org/10.1007/s12088-016-0604-6RaoSChanOWLacap-BuglerDCPointingSB. Radiation-tolerant bacteria isolated from high altitude soil in Tibet. Indian J Microbiol.2016Dec;56(4):508512. https://doi.org/10.1007/s12088-016-0604-610.1007/s12088-016-0604-6506169627784950Search in Google Scholar

Řeháková K, Chroňáková A, Krištůfek V, Kuchtová B, Čapková K, Scharfen J, Čapek P, Doležal J. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front Microbiol. 2015 Apr 16;6:304. https://doi.org/10.3389/fmicb.2015.00304ŘehákováKChroňákováAKrištůfekVKuchtováBČapkováKScharfenJČapekPDoležalJ. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front Microbiol.2015Apr 16;6:304. https://doi.org/10.3389/fmicb.2015.0030410.3389/fmicb.2015.00304439933425932023Search in Google Scholar

Shen X, Li Y, Zhao Z, Han YF, Zhang WW, Yu XY, Zhang CY, Sun C, Wu M. Polyphasic taxonomic characterisation of a novel strain as Pararhizobium haloflavum sp. nov., isolated from soil samples near a sewage treatment tank. Antonie van Leeuwenhoek. 2018 Apr;111(4):485–491. https://doi.org/10.1007/s10482-017-0969-5ShenXLiYZhaoZHanYFZhangWWYuXYZhangCYSunCWuM. Polyphasic taxonomic characterisation of a novel strain as Pararhizobium haloflavum sp. nov., isolated from soil samples near a sewage treatment tank. Antonie van Leeuwenhoek.2018Apr;111(4):485491. https://doi.org/10.1007/s10482-017-0969-510.1007/s10482-017-0969-529134394Search in Google Scholar

Shen Y, Zhang H, Cheng L, Wang L, Qian H, Qi X. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem. 2016 Mar;194:1003–1012. https://doi.org/10.1016/j.foodchem.2015.08.083ShenYZhangHChengLWangLQianHQiX. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chem.2016Mar;194:10031012. https://doi.org/10.1016/j.foodchem.2015.08.08310.1016/j.foodchem.2015.08.083Search in Google Scholar

Soenens A, Gomila M, Imperial J. Neorhizobium tomejilense sp. nov., first non-symbiotic Neorhizobium species isolated from a dry-land agricultural soil in southern Spain. Syst Appl Microbiol. 2019 Mar;42(2):128–134. https://doi.org/10.1016/j.syapm.2018.09.001SoenensAGomilaMImperialJ. Neorhizobium tomejilense sp. nov., first non-symbiotic Neorhizobium species isolated from a dry-land agricultural soil in southern Spain. Syst Appl Microbiol.2019Mar;42(2):128134. https://doi.org/10.1016/j.syapm.2018.09.00110.1016/j.syapm.2018.09.001Search in Google Scholar

Tang JY, Ma J, Li XD, Li YH. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China. BMC Microbiol. 2016 Dec;16(1):276. https://doi.org/10.1186/s12866-016-0892-3TangJYMaJLiXDLiYH. Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet, China. BMC Microbiol.2016Dec;16(1):276. https://doi.org/10.1186/s12866-016-0892-310.1186/s12866-016-0892-3Search in Google Scholar

Yin MY, He JQ, Zhang GJ. [Biological activity and diversity of psychrophilic Actinomycetes in Tibet] (in Chinese). J Northwest Agric Forest Univer (Nat Sci Ed). 2017;45(6):221–234.YinMYHeJQZhangGJ. [Biological activity and diversity of psychrophilic Actinomycetes in Tibet] (in Chinese). J Northwest Agric Forest Univer (Nat Sci Ed).2017;45(6):221234.Search in Google Scholar

Yu Y, Guo Z, Wu H, Kahmann JA, Oldfield F. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Global Biogeochem Cy. 2009;23: GB2021. https://doi.org/10.1029/2008GB003428YuYGuoZWuHKahmannJAOldfieldF. Spatial changes in soil organic carbon density and storage of cultivated soils in China from 1980 to 2000. Global Biogeochem Cy.2009;23: GB2021. https://doi.org/10.1029/2008GB00342810.1029/2008GB003428Search in Google Scholar

Yuan Y, Si G, Wang J, Luo T, Zhang G. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol Ecol. 2014 Jan;87(1):121–132. https://doi.org/10.1111/1574-6941.12197YuanYSiGWangJLuoTZhangG. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol Ecol.2014Jan;87(1):121132. https://doi.org/10.1111/1574-6941.1219710.1111/1574-6941.12197Search in Google Scholar

Zhang G, Niu F, Ma X, Liu W, Dong M, Feng H, An L, Cheng G. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol. 2007 Aug;53(8): 1000–1010. https://doi.org/10.1139/W07-031ZhangGNiuFMaXLiuWDongMFengHAnLChengG. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region. Can J Microbiol.2007Aug;53(8): 10001010. https://doi.org/10.1139/W07-03110.1139/W07-031Search in Google Scholar

Zhang K, Yang J, Qiao Z, Cao X, Luo Q, Zhao J, Wang F, Zhang W. Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem. 2019 Sep;293:32–40. https://doi.org/10.1016/j.foodchem.2019.04.053ZhangKYangJQiaoZCaoXLuoQZhaoJWangFZhangW. Assessment of β-glucans, phenols, flavor and volatile profiles of hulless barley wine originating from highland areas of China. Food Chem.2019Sep;293:3240. https://doi.org/10.1016/j.foodchem.2019.04.05310.1016/j.foodchem.2019.04.053Search in Google Scholar

Zhang S, Yang G, Wang Y, Hou S. Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau. J Environ Sci (China). 2010a Sep;22(9):1418–1424. https://doi.org/10.1016/S1001-0742(09)60269-2ZhangSYangGWangYHouS. Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau. J Environ Sci (China).2010aSep;22(9):14181424. https://doi.org/10.1016/S1001-0742(09)60269-210.1016/S1001-0742(09)60269-2Search in Google Scholar

Zhang Y, Dong S, Gao Q, Liu S, Zhou H, Ganjurjav H, Wang X. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Sci Total Environ. 2016 Aug;562:353–363. https://doi.org/10.1016/j.scitotenv.2016.03.221ZhangYDongSGaoQLiuSZhouHGanjurjavHWangX. Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Sci Total Environ.2016Aug;562:353363. https://doi.org/10.1016/j.scitotenv.2016.03.22110.1016/j.scitotenv.2016.03.22127100015Search in Google Scholar

Zhang YQ, Liu HY, Chen J, Yuan LJ, Sun W, Zhang LX, Zhang YQ, Yu LY, Li WJ. Diversity of culturable actinobacteria from Qinghai-Tibet plateau, China. Antonie van Leeuwenhoek. 2010b Aug;98(2): 213–223. https://doi.org/10.1007/s10482-010-9434-4ZhangYQLiuHYChenJYuanLJSunWZhangLXZhangYQYuLYLiWJ. Diversity of culturable actinobacteria from Qinghai-Tibet plateau, China. Antonie van Leeuwenhoek.2010bAug;98(2): 213223. https://doi.org/10.1007/s10482-010-9434-410.1007/s10482-010-9434-420361256Search in Google Scholar

Zhao NN, Guggenberger G, Shibistova O, Thao DT, Shi WJ, Li XG. Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau. Plant Soil. 2014 Nov;384(1–2):289–301. https://doi.org/10.1007/s11104-014-2210-xZhaoNNGuggenbergerGShibistovaOThaoDTShiWJLiXG. Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau. Plant Soil.2014Nov;384(1–2):289301. https://doi.org/10.1007/s11104-014-2210-x10.1007/s11104-014-2210-xSearch in Google Scholar

eISSN:
2544-4646
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Microbiology and Virology