Acceso abierto

Improvement of enzyme stability via non-covalent complex formation with dextran against temperature and storage lifetime


Cite

The optimal methodology to prepare the novel modified enzyme, polymer-enzyme complex, was developed to give a high catalytic activity in aqueous solution. The non-covalent complexes of two different enzymes (horseradish peroxidase and glucose oxidase) were prepared with various molar ratios (nD/nE 0,05; 0,1; 1; 5; 10; 15; 20) by using 75kDa dextran. The thermal stabilities of the obtained complexes were evaluated with the activities determined at different temperatures (25, 30, 35, 40, 50, 60, 70, 80°C) applying 60 minutes incubation time for pH 7. The complexes with the molar ratio nD/nHRP: 10 and nD/nGOD: 5 showed the highest thermal stability. Its activity was very high (ca. 1,5-fold higher activity than pure enzyme for HRP-dextran complexes) and almost the same between applying one hour incubation time and without incubation, and could also be measured at high temperatures (70, 80 °C). We finally succeeded in preparing dextran-enzyme complexes which showed higher activity than pure enzyme in aqueos solution at all temperatures for pH 7. In addition, the mentioned complexes at pH 7 had very long storage lifetime compared to purified enzyme at +4 °C; which is considered as a good feature for the usage in practice.

eISSN:
1899-4741
ISSN:
1509-8117
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering