Acceso abierto

An Overview of Bone Replacement Materials – Biological Mechanisms and Translational Research


Cite

1. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36(3): S20-7.10.1016/j.injury.2005.07.029Search in Google Scholar

2. Poirier, J., Ribadeau Dumas, J.L., Catala, M., et al. Histologie: les tissus. (2002). Médecine 1ere année. 2eme éd. Paris: Masson,2002Search in Google Scholar

3. Donati D, Zolezzi C, Tomba P, Viganò A. Bone grafting: historical and conceptual review, starting with an old manuscript by Vittorio Putti. Acta Orthop. 2007; 78(1): 19-25.10.1080/17453670610013376Search in Google Scholar

4. Fernandez de Grado G, Keller L, Idoux-Gillet Y, Wagner Q, Musset AM, Benkirane-Jessel N, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. J Tissue Eng. 2018; 9: 2041731418776819.10.1177/2041731418776819Search in Google Scholar

5. Dressman H. Ueber Knochenplombierung bei Hohlenformigen Defekten des Knochens. Beitr Klin Chir 1892. 9, 804-10.Search in Google Scholar

6. Martin E. Zur AiisfuIIune von Knochenhohlen mit todtem Material. Zentralbl. Cbir. 1894; 2 I : I 93 200.Search in Google Scholar

7. McGovern JA, Griffin M, Hutmacher DW. Animal models for bone tissue engineering and modelling disease. Dis Model Mech 2018; 11(4): dmm033084.10.1242/dmm.033084Search in Google Scholar

8. Gabriele Sommer, N., Hahn, D., Okutan, B., Marek, R., & Weinberg, A.-M. (2020). Animal Models in Orthopedic Research: The Proper Animal Model to Answer Fundamental Questions on Bone Healing Depending on Pathology and Implant Material (1st. ed.). Animal Models in Medicine and Biology. Eva Tvrdá and Sarat Chandra Yenisetti, IntechOpen.10.5772/intechopen.89137Search in Google Scholar

9. Li Y, Chen SK, Li L, Qin L, Wang XL, Lai YX. Bone defect animal models for testing efficacy of bone substitute biomaterials. J Orthop Translat 2015; 3(3): 95-104.10.1016/j.jot.2015.05.002Search in Google Scholar

10. Clements JR, Carpenter BB, Pourciau JK. Treating segmental bone defects: a new technique. J Foot Ankle Surg 2008; 47(4): 350-6.10.1053/j.jfas.2008.04.006Search in Google Scholar

11. Giannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36(3): S20-7.10.1016/j.injury.2005.07.029Search in Google Scholar

12. Gilbert SF. (2000). Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; Available from: https://www.ncbi.nlm.nih.gov/books/NBK9983/.Search in Google Scholar

13. Saima S, Jan SM, Shah AF, Yousuf A, Batra M. Bone grafts and bone substitutes in dentistry. J Oral Res Rev 2016; 8(1): 36-8.10.4103/2249-4987.182488Search in Google Scholar

14. Cypher TJ, Grossman JP. Biological principles of bone graft healing. J Foot Ankle Surg. 1996; 35(5): 413-7.10.1016/S1067-2516(96)80061-5Search in Google Scholar

15. Wypych G. (2018) Functional fillers – Chemical Composition, Morphology, Performance, Applications (1st. ed.). Functional Fillers. ChemTec Publishing, 153-79.10.1016/B978-1-927885-37-6.50008-4Search in Google Scholar

16. Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J 2001; 10(2): S96-101.10.1007/s005860100282Search in Google Scholar

17. Hudecki A, Kiryczyński G, Łos MJ. Biomaterials, Definition, Overview. Stem Cells and Biomaterials for Regenerative Medicine 2019; 85–98.10.1016/B978-0-12-812258-7.00007-1Search in Google Scholar

18. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32(3): 477-86.10.1023/B:ABME.0000017544.36001.8eSearch in Google Scholar

19. Schallhorn RG. Present status of osseous grafting procedures. J Periodontol 1977; 48(9): 570-6.10.1902/jop.1977.48.9.570Search in Google Scholar

20. Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci 2013; 5(1): S125-7.10.4103/0975-7406.113312Search in Google Scholar

21. Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop Relat Res 2000; 371: 10-27.Search in Google Scholar

22. Dodd CA, Fergusson CM, Freedman L, Houghton GR, Thomas D. Allograft versus autograft bone in scoliosis surgery. J Bone Joint Surg Br 1988; 70(3): 431-4.10.1302/0301-620X.70B3.3286656Search in Google Scholar

23. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 1989; 71(4): 677-80.Search in Google Scholar

24. Friedlaender GE, Strong DM, Tomford WW, Mankin HJ. Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am 1999; 30(4): 583-8.10.1016/S0030-5898(05)70111-5Search in Google Scholar

25. Damien CJ, Parsons JR. Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater 1991; 2(3): 187-208.10.1002/jab.77002030710149083Search in Google Scholar

26. Goldberg, V.M., Stevenson, S. & Shaffer, J.W. Biology of autografts and allografts. In: Friedlander GE, Goldberg VM, editors. Bone and cartilage allografts: biology and clinical applications. Park Ridge, Illinois: The American Academy of Orthopaedic Surgeons; 1991: 3—11.Search in Google Scholar

27. Hubbell JA. Biomaterials in tissue engineering. Biotechnology (N Y). 1995; 13(6): 565-76.10.1038/nbt0695-5659634795Search in Google Scholar

28. Campana V, Milano G, Pagano E, Barba M, Cicione C, Salonna G, et al. Bone substitutes in orthopaedic surgery: from basic science to clinical practice. J Mater Sci Mater Med 2014; 25(10): 2445-61.10.1007/s10856-014-5240-2Search in Google Scholar

29. Albanese A, Licata ME, Polizzi B, Campisi G. Plateletrich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing 2013; 10(1): 23.10.1186/1742-4933-10-23Search in Google Scholar

30. Chai F, Raoul G, Wiss A, Ferri J, Hildebrand HF. Bone substitutes: Classification and concerns. Rev Stomatol Chir Maxillofac 2011; 112(4): 212-21.10.1016/j.stomax.2011.06.003Search in Google Scholar

31. Liodaki E, Kraemer R, Mailaender P, Stang F. The Use of Bone Graft Substitute in Hand Surgery: A Prospective Observational Study. Medicine (Baltimore) 2016; 95(24): e3631.10.1097/MD.0000000000003631Search in Google Scholar

32. Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000; 31(4): 37-47.10.1016/S0020-1383(00)80022-4Search in Google Scholar

33. Wendler A, Wehling M. The translatability of animal models for clinical development: biomarkers and disease models. Curr Opin Pharmacol 2010; 10(5): 601-6.10.1016/j.coph.2010.05.00920542730Search in Google Scholar

34. Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 2011; 45(1): 14-24.10.1258/la.2010.01008521156759Search in Google Scholar

35. Hambright WS, Niedernhofer LJ, Huard J, Robbins PD. Murine models of accelerated aging and musculoskeletal disease. Bone 2019; 125: 122-7.10.1016/j.bone.2019.03.00230844492Search in Google Scholar

36. An, Y.H. & Freidman, R.J. (1998). Animal models in orthopedic research (1st ed.). Boca Raton, FL: CRC Press 1998. pp. 39-57. 622 p.Search in Google Scholar

37. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 1986; (205): 299-308.10.1097/00003086-198604000-00036Search in Google Scholar

38. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007; 13: 1-10.10.22203/eCM.v013a0117334975Search in Google Scholar

39. An, Y.H. & Freidman, R.J. (1998). Animal Selections in Orthopaedic Research (1st ed.). Florida, US: CRC Press 1998; pp. 126-164. 622 p.Search in Google Scholar

40. Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 1995; 16(4): 277S-284S.10.1016/8756-3282(95)00026-ASearch in Google Scholar

41. V DK Development of bone G. Sumner-Smith (Ed.), Bone in clinical orthopedics, W.B. Saunders Co., Philadelphia (2006), pp. 1-80Search in Google Scholar

42. Pastoureau P, Arlot M, Caulin F, Barlet J, Meunier P, Delmas P. Effects of oophorectomy on biochemical and histological indices of bone turnover in ewes. J Bone Miner Res 1989; 4(1): 58.Search in Google Scholar

43. Maissen O, Eckhardt C, Gogolewski S, Glatt M, Arvinte T, Steiner A, Rahn B, Schlegel U. Mechanical and radiological assessment of the influence of rhTGFbeta-3 on bone regeneration in a segmental defect in the ovine tibia: pilot study. J Orthop Res 2006; 24(8): 1670-8.10.1002/jor.2023116795047Search in Google Scholar

44. Reichert JC, Epari DR, Wullschleger ME, Saifzadeh S, Steck R, Lienau J, Sommerville S, Dickinson IC, Schütz MA, Duda GN, Hutmacher DW. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies. Tissue Eng Part B Rev 2010; 16(1): 93-104.10.1089/ten.teb.2009.0455Search in Google Scholar

45. Thorwarth M, Schultze-Mosgau S, Kessler P, Wiltfang J, Schlegel KA. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg 2005; 63(11): 1626-33.10.1016/j.joms.2005.06.01016243180Search in Google Scholar

46. Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998; 139(2): 663-70.10.1210/endo.139.2.57519449639Search in Google Scholar

47. Mosekilde L, Kragstrup J, Richards A. Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 1987; 40(6): 318-22.10.1007/BF025566933111670Search in Google Scholar

48. Pecquet Goad ME, Goad DL. Biomedical Material and Devices. Haschek and Rousseaux’s Handbook of Toxicologic Pathology 2013; 2: 783-806.10.1016/B978-0-12-415759-0.00026-1Search in Google Scholar

49. Thrivikraman G, Madras G, Basu B. In vitro/In vivo assessment and mechanisms of toxicity of bioceramic materials and its wear particulates. RSC Adv 2014; 4(25): 12763.10.1039/c3ra44483jSearch in Google Scholar

50. Liu LP, Xiao YB, Xiao ZW, Wang ZB, Li C, Gong X. Toxicity of hydroxyapatite nanoparticles on rabbits. Journal of hygiene research 2005; 34(4): 474-6.Search in Google Scholar

51. Ooi JP, Kasim SR, Shaari RB, Saidin NA. In vivo efficacy and toxicity of synthesized nano-β-tricalcium phosphate in a rabbit tibial defect model. Toxicol Res Appl 2018; 2: 1–9.10.1177/2397847318819499Search in Google Scholar

52. Arsenijevic N, Selakovic D, Katanic Stankovic JS, Mihailovic V, Mit52.rovic S, Milenkovic J, et al. The Beneficial Role of Filipendula ulmaria Extract in Prevention of Prodepressant Effect and Cognitive Impairment Induced by Nanoparticles of Calcium Phosphates in Rats. Oxid Med Cell Longev 2021; 2021: 6670135.10.1155/2021/6670135789559233628375Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other