1. bookVolumen 26 (2018): Edición 4 (December 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1338-3973
ISSN
1210-3896
Primera edición
23 May 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Variable Parameter Multilinear Muskingum Method: Case Study on the Danube River

Publicado en línea: 18 Jan 2019
Volumen & Edición: Volumen 26 (2018) - Edición 4 (December 2018)
Páginas: 56 - 65
Detalles de la revista
License
Formato
Revista
eISSN
1338-3973
ISSN
1210-3896
Primera edición
23 May 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés

Afzali, S.H. (2016) Variable-Parameter Muskingum Model, Iranian Journal of Science and Technology - Transactions of Civil Engineering, 40, 1, pp. 59-68. DOI: 10.1007/s40996-016-0001-8.10.1007/s40996-016-0001-8Abierto DOISearch in Google Scholar

Al-Humoud, J.M. - Esen, I. (2006) Approximate method for the estimation of Muskingum flood routing parameters, Water Resources Management 20:979-990, Springer 2006.10.1007/s11269-006-9018-2Search in Google Scholar

Asgari, H.R. - Bozog-Haddad, O. - Loáiciga, H.A. (2018) Closure to “Parameter Estimation of Extended Nonlinear Muskingum Models with the Weed Optimization Algorithm” by Farzan Hamedi, Omid Bozorg-Haddad, Maryam Pazoki, Hamid-Reza Asgari, Mehran Parsa, and Hugo A. Loáiciga, Journal of Irrigation and Drainage Engineering, 144, 1, pp. 1-2.10.1061/(ASCE)IR.1943-4774.0001254Search in Google Scholar

Bačová Mitková, V. - Halmová, D. (2014) Joint modeling of flood peak discharges, volume and duration: a case study of the Danube River in Bratislava, J. Hydrol. Hydromech., Vol. 62, No. 3, 2014, pp. 186 - 196.10.2478/johh-2014-0026Search in Google Scholar

Bai, T. - Wei, J. - Yang, W. - Huang, Q. (2018) Multi-Objective Parameter Estimation of Improved Muskingum Model by Wolf Pack Algorithm and Its Application in Upper Hanjiang River, China, Water, 10, 10, pp. 1-12.10.3390/w10101415Search in Google Scholar

Baláž, M. - Danáčová, M. - Szolgay, J. (2010) On the use of the Muskingum method for the simulation of flood wave movements. Slovak Journal of Civil Engineering. Vol. 18, No. 3, pp.14-20. ISSN 1210-3896.10.2478/v10189-010-0012-6Search in Google Scholar

Birkhead, A.L. - James, C.S., (2002) Muskingum river routing with dynamic bank storage, Journal of Hydrology 264 (2002), pp. 113-132.Search in Google Scholar

Danáčová, M. - Baláž, M. - Šúrek, P. - Szolgay, J. (2011) Modelovanie povodňových vĺn v otvorených korytách tokov hydrologickými modelmi. (Hydrological modelling of flood waves in open channel), Acta Hydrologica Slovaca. Vol.12, Special issue, pp. 55-63. ISSN 1335-6291.Search in Google Scholar

Danáčová, M. - Papinčáková, L. - Szolgay, J. (2014) Modelové porovnanie zmien odtokových pomerov na transformáciu prietokových vĺn na Dunaji. (Comparison of changes in transformation flood waves using a multilinear routing model on the Danube River), Acta Hydrologica Slovaca. Vol. 15, Special issue, pp. 42-53. ISSN 1335-6291.Search in Google Scholar

Danáčová, M. - Szolgay, J. - Výleta, R. (2015) Estimation of the relationship between the travel time of flood peaks and peak discharge on the Poprad River by multilinear flood routing. In International Journal of New Technology and Research. Vol. 1, no. 6 online, pp. 35-39.Search in Google Scholar

Easa, S.M. (2013) Improved Nonlinear Muskingum Model with Variable Exponent Parameter, Journal of Hydrologic Engineering, 18, 12, pp. 1790-1794. DOI: 10.1061/(ASCE)HE. 1943-5584.0000702.10.1061/(ASCE).1943-5584.0000702Abierto DOISearch in Google Scholar

Farzin, S. - Singh, V.P. - Karami, H. - Farahani, N. - Ehteram, M. - Kisi, O. - Allawi, M.F. - Mohd, N.S. - El-Shafie, A. (2018) Flood routing in River Reaches using a three-parameter Muskingum model coupled with an improved Bat Algorithm, Water, 10, 9, pp. 1-24.Search in Google Scholar

Fread, D. L. (1985) Applicability criteria for kinematic and diffusion routing models, Laboratory of Hydrology, National Weather Service, NOAA, U.S. Dept. of Commerce, Silver Spring, Md.Search in Google Scholar

Hamedi, F. - Bozorg-Haddad, O. - Pazoki, M. - Asgari, H.-R. - Parsa, M. - Loáiciga, H.A. (2016) Parameter Estimation of Extended Nonlinear Muskingum Models with the Weed Optimization Algorithm, Journal of Irrigation and Drainage Engineering, 142, 12, pp. 1-11.Search in Google Scholar

Chulsang, Y. - Jinwook, L. - Myungseob, L. (2017) Parameter Estimation of the Muskingum Channel Flood-Routing Model in Ungauged Channel Reaches, Journal of Hydrologic Engineering, 22, 7, pp. 1-9.Search in Google Scholar

Kang, L. - Zhou, L. (2018) Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver, IOP Conference Series: Earth and Environmental Science, 121 DOI: 10.1088/1755-1315/121/5/052047.10.1088/1755-1315/121/5/052047Abierto DOISearch in Google Scholar

Karahan, H. - Gurarslan, G. - Geem, Z.W. (2015) A new nonlinear Muskingum flood routing model incorporating lateral flow, Engineering Optimization, 47, 6, pp. 737-749.Search in Google Scholar

Kundzewicz, Z.W. - Dooge, J.C.I. (1985) Unified structural approach to linear flood routing. Adv. Water Res., 8, 3, pp. 37-42.10.1016/0309-1708(85)90079-XSearch in Google Scholar

Laurenson, E.M. (1964) A catchment storage model for runoff routing, Journal of Hydrology 2, pp. 141-163.Search in Google Scholar

Liggett, J. A. - J. A. Cunge (1975) Numerical Methods of Solution of the Unsteady Flow Equations, In K. Mahmood and V. Yevjevich, eds., Unsteady Flow in Open Channels, vol. I, chap. 4, pp. 89- 182, Water Resources Publ., Fort Collins, Colo.Search in Google Scholar

Linsley, R. K. - Kohler, M. A. - Paulhus, J. L. H. (1986) Hydrology for Engineers, McGraw-Hill, New York.Search in Google Scholar

Luo, J. - He, X. (2014) Discussion of “Improved Nonlinear Muskingum Model with Variable Exponent Parameter” by Said M. Easa, Journal of Hydrologic Engineering, 19, 10, p. 7014005.10.1061/(ASCE)HE.1943-5584.0001042Search in Google Scholar

Maidment, D. R. - Fread D.L. (1993) Handbook of Hydrology, Chap. 10, Flow Routing, - chap. 10, ISBN 0070397325 /9780070397323, McGraw-Hill, 1424 pp.Search in Google Scholar

Malone, T.A. - Cordery, I. (1989) An assessment of network models in flood forecasting, New directions of surface water modelling, Proceedings of Baltimore Symposium, ed. Kavvas, M.L., IAHS, 181, pp. 115-124.Search in Google Scholar

McCarthy, G.T. (1938) The unit hydrograph and flood routing, Conference of North Atlantic Division, US Army Corps of Engineers, New London, CT. US Engineering.Search in Google Scholar

Meyer, A. - Fleischmann, A.S. - Collischonn, W. - Paiva, R. - Jardim, P. (2018) Empirical assessment of flood wave celerity-discharge relationships at local and reach scales, Hydrological Sciences Journal, (online), DOI: 10.1080/02626667.2018.155733610.1080/02626667.2018.1557336Abierto DOISearch in Google Scholar

Nash, J. E. - Sutcliffe, J. V. (1970) River flow forecasting through conceptual models part I - A discussion of principles, Journal of Hydrology, 10 (3), pp. 282-290.Search in Google Scholar

Niazkar, M. - Afzali, S.H. (2016) Parameter estimation of an improved nonlinear Muskingum model using a new hybrid method, Hydrology Research, 48, 5, pp. 1253-1267.Search in Google Scholar

O’Donnell, T., - Pearson, C. - Woods, R. A. (1988) “Improved Fitting for Three Parameter Muskingum Procedure,” J. Hydraul. Eng., vol. 114, no. 5, pp. 516-528.10.1061/(ASCE)0733-9429(1988)114:5(516)Search in Google Scholar

Oliveira, A.M. - Fleischmann, A. - Collischonn, W. - Paiva, R. - Jardim, P. (in review) Empirical assessment of flood wave celerity- discharge relationships at local and reach scales, Hydrological Sciences Journal.Search in Google Scholar

O’Sullivan, J.J. - Ahilan S. - Bruen M. (2012) A modified Muskingum routing approach for flood plain flows: theory and practice. J. Hydrology 470-471:239-254.10.1016/j.jhydrol.2012.09.007Search in Google Scholar

Pekár, J. - Miklánek, P. - Pekárová, P. (2001) Riečny model nelineárnej kaskády NLN-Danube pre Dunaj v úseku Ybbs - Nagymaros v prostredí MS EXCEL. (A nonlinear cascade model for the Danube River between Ybbs and Nagymaros in MS EXCEL) [in Slovak]. Acta Hydrologica Slovaca, Vol. 2, No. 2, pp. 130-137.Search in Google Scholar

Pekárová, P. - Szolgay, J. - Mitková, V. - Kubeš R. (2004) Kalibrácia dvoch hydrologických riečnych modelov transformácie povodňových vĺn Dunajav úseku Kienstock - Bratislava. (Calibration of two flood routing models on the Danube between Kienstock and Bratislava) [in Slovak]. Acta Hydrologica Slovaca, Vol. 5, No. 1, pp. 24-33.Search in Google Scholar

Perumal, M. - Sahoo, B. (2008) Volume conservation controversy of the variable parameter Muskingum-Cunge method, Journal of Hydraulic Engineering, Vol. 134, No. 4, pp. 475-483.Search in Google Scholar

Ponce, V. M. - Chaganti, P. V. (1994) Variable-parameter Muskingum- Cunge method revisited, Journal of Hydrology, Vol. 162, No. 3 - 4, pp. 433-439.Search in Google Scholar

Ponce, V. M. - Theurer, F. D. (1982) Accuracy Criteria in Diffusion Routing. J. of Hydraulics Div., ASCE, 1C8(HY6):747-757.10.1061/JYCEAJ.0005872Search in Google Scholar

Ponce, V. M. - Yevjevich, V. (1978) Muskingum Cunge Method with Variable Parameters. J. of Hydraulics Div., ASCE, 104(HY12):1663-1667.10.1061/JYCEAJ.0005119Search in Google Scholar

Price, R. K. (1973) Flood routing methods for British rivers, Proc. Inst. Civ. Eng., 1973, 55, pp. 913-930.Search in Google Scholar

Skublics, D. - Blöschl, G. - Rutschmann, P. (2016) Effect of river training on flood retention of the Bavarian Danube. Journal of Hydrology and Hydromechanics, 64 (4), pp. 349-356.10.1515/johh-2016-0035Search in Google Scholar

Sleziak, P. - Szolgay, J. - Hlavčová, K. - Duethmann, D. - Parajka, J. - Danko, M. (2018) Factors controlling alterations in the performance of a runoff model in changing climate conditions, J. Hydrol. Hydromech., Vol. 66, No. 4, 2018, pp. 381 - 392.10.2478/johh-2018-0031Search in Google Scholar

Sleziak, P. - Szolgay, J. - Hlavčová, K. - Parajka, J. (2016) The Impact of the Variability of Precipitation and Temperatures on the Efficiency of a Conceptual Rainfall-Runoff Model. Slovak Journal of Civil Engineering, Vol. 24, No. 4, pp. 1-7.10.1515/sjce-2016-0016Search in Google Scholar

Svoboda, A. - Pekárová, P. - Miklánek, P. (2000) Flood hydrology of Danube between Devin and Nagymaros, Publ. No. 5, of the Slovak National Committee IHP UNESCO.Search in Google Scholar

Szolgay, J. - Šúrek, P. - Danáčová, M. - Jurčák, S. (2007) Kalibrácia multilineárneho transformačného hydrologického modelu pomocou princípov genetického programovania. (On the estimation of the relationship between discharge and travel time using a multilinear model in the upper Hron catchment). [in Slovak] Acta Hydrologica Slovaca. Vol. 8, No. 1, 35 - 44, ISSN 1335-6291.Search in Google Scholar

Szolgay, J. (1982) Contribution to the discredited models of linear continuous transformation of flood waves (Príspevok k diskreditácii spojitých lineárnych modelov transformácie povodňovej vlny), Journal of Hydrology and Hydromechanics, Vol. 30, 1982, No. 2, pp. 141 - 154.Search in Google Scholar

Tang, X. - Knight, D. W. - Samuels, P. G. (1999) Volume conservation in Variable Parameter Muskingum-Cunge Method, J. Hydraulic Eng. (ASCE), 125(6), 610-620.10.1061/(ASCE)0733-9429(1999)125:6(610)Search in Google Scholar

Valent, P. - Paquet, E. (2017) An application of a stochastic semi-continuous simulation method for flood frequency analysis: A case study in Slovakia, Slovak Journal of Civil Engineering, Vol. 25, 2017, No. 3, pp. 30 - 44.Search in Google Scholar

Valent, P. (2008) On the use of the Muskingum method for the simulation of flood wave in the River reach (Tranformácia prietokových vĺn korytom toku modelom Musingum), Bc. thesis at Slovak University of Technology Bratislava (Záverečná práca bakalárskeho štúdia, Stavebná fakulta STU v Bratislave), 30 pp. [in Slovak].Search in Google Scholar

Wong, T.H.F. - Laurenson, E.M. (1983) Wave speed-discharge relations in natural channels, Water Resources Res., 19, pp. 701-706.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo