Acceso abierto

Critical state constitutive models and shear loading of overconsolidated clays with deviatoric hardening


Cite

Amorosi, A., Boldini, D., & Germano, V. (2008). Implicit integration of a mixed isotropic kinematic hardening plasticity model for structured clays. International journal for numerical and analytical methods in geomechanics, 32(10), 1173–1203.AmorosiA.BoldiniD.&GermanoV.2008Implicit integration of a mixed isotropic kinematic hardening plasticity model for structured claysInternational journal for numerical and analytical methods in geomechanics32101173120310.1002/nag.663Search in Google Scholar

Barla, M. (1999). Tunnels in swelling ground: simulation of 3d stress paths by triaxial laboratory testing (Unpublished doctoral dissertation). Po-litecnico di Torino.BarlaM.1999Tunnels in swelling ground: simulation of 3d stress paths by triaxial laboratory testing (Unpublished doctoral dissertation)Po-litecnico di TorinoSearch in Google Scholar

Bishop, A. W., & Henkel, D. J. (1957). The measurment of soil properties in the triaxial test. Edward Arnold Publishers.BishopA. W.&HenkelD. J.1957The measurment of soil properties in the triaxial testEdward Arnold PublishersSearch in Google Scholar

Chakraborty, T., Salgado, R., & Loukidis, D. (2013). A two-surface plasticity model for clay. Computers and Geotechnics, 49, 170-190.ChakrabortyT.SalgadoR.&LoukidisD.2013A two-surface plasticity model for clayComputers and Geotechnics4917019010.1016/j.compgeo.2012.10.011Search in Google Scholar

Chen, J. (2017). A monotonic bounding surface critical state model for clays. Acta Geotechnica, 12, 225-230.ChenJ.2017A monotonic bounding surface critical state model for claysActa Geotechnica1222523010.1007/s11440-016-0439-7Search in Google Scholar

Chen, Y., & Yang, Z. (2017). A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays. Computers and Geotechnics, 90, 133–143.ChenY.&YangZ.2017A family of improved yield surfaces and their application in modeling of isotropically over-consolidated claysComputers and Geotechnics9013314310.1016/j.compgeo.2017.06.007Search in Google Scholar

Dafalias, Y. F. (1986). An anisotropic critical state soil plasticity model. Mechanics Research communications, 13, 341-347.DafaliasY. F.1986An anisotropic critical state soil plasticity modelMechanics Research communications1334134710.1016/0093-6413(86)90047-9Search in Google Scholar

Dafalias, Y. F. (2016). Must critical state theory be revisited to include fabric effects? Acta Geotechnica, 11, 479-491.DafaliasY. F.2016Must critical state theory be revisited to include fabric effects? Acta Geotechnica1147949110.1007/s11440-016-0441-0Search in Google Scholar

Dafalias, Y. F., Manzari, M. T., & Papadimitriou, A. G. (2006). Saniclay: simple anisotropic clay plasticity model. International Journal For Numerical and Analytical Methods In Geomechanics, 30, 1231-1257.DafaliasY. F.ManzariM. T.&PapadimitriouA. G.2006Saniclay: simple anisotropic clay plasticity modelInternational Journal For Numerical and Analytical Methods In Geomechanics301231125710.1002/nag.524Search in Google Scholar

Dafalias, Y. F., & Taiebat, M. (2013). Anatomy of rotational hardening in clay plasticity. Géotechnique, 63, 1406-1418.DafaliasY. F.&TaiebatM.2013Anatomy of rotational hardening in clay plasticityGéotechnique631406141810.1680/geot.12.P.197Search in Google Scholar

DAO, L. Q. (2015). Etude du comportement anisotrope de l’argile de boom (Unpublished doctoral dissertation). Ecole des Ponts ParisTech.DAOL. Q.2015Etude du comportement anisotrope de l’argile de boom (Unpublished doctoral dissertation)Ecole des Ponts ParisTechSearch in Google Scholar

Desai, C., Somasundaram, S., & Frantziskonis, G. (1986). A hierarchical ap-proach for constitutive modelling of geologic materials. International Journal for Numerical and Analytical Methods in Geomechanics, 10(3), 225–257.DesaiC.SomasundaramS.&FrantziskonisG.1986A hierarchical ap-proach for constitutive modelling of geologic materialsInternational Journal for Numerical and Analytical Methods in Geomechanics10322525710.1002/nag.1610100302Search in Google Scholar

Desai, C. S. (1980). A general basis for yield, failure and potential func-tions in plasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 4(4), 361–375.DesaiC. S.1980A general basis for yield, failure and potential func-tions in plasticityInternational Journal for Numerical and Analytical Methods in Geomechanics4436137510.1002/nag.1610040406Search in Google Scholar

Einav, I., & Puzrin, A. M. (2004). Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. Journal of Geotechnical and Geoenvironmental engineering, 63(8), 81-92.EinavI.&PuzrinA. M.2004Pressure-dependent elasticity and energy conservation in elastoplastic models for soilsJournal of Geotechnical and Geoenvironmental engineering638819210.1061/(ASCE)1090-0241(2004)130:1(81)Search in Google Scholar

Gasparre, A. (2005). Advanced laboratory characterization of london clay (Unpublished doctoral dissertation). Imperial College London.GasparreA.2005Advanced laboratory characterization of london clay (Unpublished doctoral dissertation)Imperial College LondonSearch in Google Scholar

Gens, A., & Potts, D. M. (1988). Critical state models in computational geomechanics. Engineering Computation, 5, 178-197.GensA.&PottsD. M.1988Critical state models in computational geomechanicsEngineering Computation517819710.1108/eb023736Search in Google Scholar

Gilelron, N. (2016). Use of the hardening soil model for urban tunnels design. In 25th european young geotechnical engineers conference, sibiu, romania.GilelronN.2016Use of the hardening soil model for urban tunnels design. In 25th european young geotechnical engineers conference, sibiuromaniaSearch in Google Scholar

Gilleron, N., & Bourgeois, E. (2016). Influence of deviatoric stress depen-dent stiffness on settlement trough width in 2d and 3d finite element modelling of tunnelling. In (p. 567-576).GilleronN.&BourgeoisE.2016Influence of deviatoric stress depen-dent stiffness on settlement trough width in 2d and 3d finite element modelling of tunnellingSearch in Google Scholar

Hattab, M., & Hicher, P.-Y. (2004). Dilating behaviour of overconsolidated clay. Soils and Foundations, 44(4), 27–40.HattabM.&HicherP.-Y.2004Dilating behaviour of overconsolidated claySoils and Foundations444274010.3208/sandf.44.4_27Search in Google Scholar

Hong, P. Y., Pereira, J. M., Tang, A. M., & Cui, Y. J. (2016). A two-surface plasticity model for stiff clay. Acta Geotechnica, 11, 871-885.HongP. Y.PereiraJ. M.TangA. M.&CuiY. J.2016A two-surface plasticity model for stiff clayActa Geotechnica1187188510.1007/s11440-015-0401-0Search in Google Scholar

Houlbsy, G. T., Amorosi, A., & Rojas, E. (2005). Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Géotechnique, 55(5), 383-392.HoulbsyG. T.AmorosiA.&RojasE.2005Elastic moduli of soils dependent on pressure: a hyperelastic formulationGéotechnique55538339210.1680/geot.2005.55.5.383Search in Google Scholar

Jin, Z. Y., Xu, Q., & Hicher, P. Y. (2017). Estimation of critical state-related formula in advanced constitutive modeling of granular mate-rial. Acta Geotechnica, 12(6), 1329-1351.JinZ. Y.XuQ.&HicherP. Y.2017Estimation of critical state-related formula in advanced constitutive modeling of granular mate-rialActa Geotechnica1261329135110.1007/s11440-017-0586-5Search in Google Scholar

Lagioia, R., & Potts, D. M. (1988). A new versatile expression for yield and plastic potential surfaces. Computers and Geotechnics, 5, 178-197.LagioiaR.&PottsD. M.1988A new versatile expression for yield and plastic potential surfacesComputers and Geotechnics517819710.1016/0266-352X(96)00005-5Search in Google Scholar

Liu, M., & Carter, J. (2002). A structured cam clay model. Canadian Geotechnical Journal, 39, 1313-1332.LiuM.&CarterJ.2002A structured cam clay modelCanadian Geotechnical Journal391313133210.1139/t02-069Search in Google Scholar

Mair, R. J. (1979). Centrifugal modelling of tunnel construction in sof clay (Unpublished doctoral dissertation). Cambridge University.MairR. J.1979Centrifugal modelling of tunnel construction in sof clay (Unpublished doctoral dissertation)Cambridge UniversitySearch in Google Scholar

Mroz, Z., & Zienkiewicz, O. C. (1984). Uniform formulation of constitutive equations for clays and sands. In Mechanics of engineering materials (John Wiley and Sons ed., p. 415-449).MrozZ.&ZienkiewiczO. C.1984Uniform formulation of constitutive equations for clays and sandsMechanics of engineering materials415449Search in Google Scholar

Obrzud, F. (2010). On the use of the hardening soil small strain model in geotechnical practice. Numerics in Geotechnics and Structures.ObrzudF.2010On the use of the hardening soil small strain model in geotechnical practiceNumerics in Geotechnics and StructuresSearch in Google Scholar

Panet, M. (1995). Calcul des tunnels par la méthode convergence-confinement. Presses de l’Ecole Nationale des Ponts et Chaussées.PanetM.1995Calcul des tunnels par la méthode convergence-confinementPresses de l’Ecole Nationale des Ponts et ChausséesSearch in Google Scholar

Potts, D. M., & Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering : theory. Thomas Telford.PottsD. M.&ZdravkovicL.1999Finite element analysis in geotechnical engineering : theoryThomas TelfordSearch in Google Scholar

Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behevior of wet clay. Cambridge University Press.RoscoeK. H.&BurlandJ. B.1968On the generalized stress-strain behevior of wet clayCambridge University PressSearch in Google Scholar

Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8, 22-52.RoscoeK. H.SchofieldA. N.&WrothC. P.1958On the yielding of soilsGéotechnique8225210.1680/geot.1958.8.1.22Search in Google Scholar

Schanz, T., & Vermeer, P. (2000). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics.SchanzT.&VermeerP.2000The hardening soil model: Formulation and verificationBeyond 2000 in Computational Geotechnics10.1201/9781315138206-27Search in Google Scholar

Schofield, A., & Wroth, P. (1968). Critical state soil mechanics (Vol. 310). McGraw-Hill London.SchofieldA.&WrothP.1968Critical state soil mechanics (Vol. 310)McGraw-Hill LondonSearch in Google Scholar

Serratrice, J. F. (2002). Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du lrpc d’aix en provence. PARAM, 313-326.SerratriceJ. F.2002Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du lrpc d’aix en provencePARAM313326Search in Google Scholar

Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified structured cam clay: A generalised critical state model for destructured, nat-urally structured and artificially structured clays. Computers and Geotechnics, 37, 956-968.SuebsukJ.HorpibulsukS.&LiuM. D.2010Modified structured cam clay: A generalised critical state model for destructured, nat-urally structured and artificially structured claysComputers and Geotechnics3795696810.1016/j.compgeo.2010.08.002Search in Google Scholar

Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2011). A critical state soil model for overconsolidated clays. Computers and Geotechnics, 38, 648-658.SuebsukJ.HorpibulsukS.&LiuM. D.2011A critical state soil model for overconsolidated claysComputers and Geotechnics3864865810.1016/j.compgeo.2011.03.010Search in Google Scholar

Sultan, N., Cui, Y.-J., & Delage, P. (2010). Yielding and plastic behaviour of boom clay. Géotechnique, 60(9), 657-666.SultanN.CuiY.-J.&DelageP.2010Yielding and plastic behaviour of boom clayGéotechnique60965766610.1680/geot.7.00142Search in Google Scholar

Tijani, M. (1996). Short description of viplef code. In Coupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studies (Elsevier ed., p. 507-511).TijaniM.1996Short description of viplef codeCoupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studiesElsevier50751110.1016/S0165-1250(96)80039-3Search in Google Scholar

Tijani, M. (2008). Contribution à l’étude thermomécanique des cavités réalisées par lessivage dans des formations géologiques salines. Uni-versité Pierre et Marie Curie.TijaniM.2008Contribution à l’étude thermomécanique des cavités réalisées par lessivage dans des formations géologiques salinesUni-versité Pierre et Marie CurieSearch in Google Scholar

Truty, A., & Obrzud, R. (2015). Improved formulation of the hardening soil model in the context of modeling the undrained behavior of cohesive soils. Studia Geotechnica et Mechanica, 37(2), 61–68.TrutyA.&ObrzudR.2015Improved formulation of the hardening soil model in the context of modeling the undrained behavior of cohesive soilsStudia Geotechnica et Mechanica372616810.1515/sgem-2015-0022Search in Google Scholar

Wood, D. M. (2003). Geotechnical modelling. CRC Press.WoodD. M.2003Geotechnical modellingCRC PressSearch in Google Scholar

Yu, H. S. (1998). Casm: A unified state parameter model for clay and sand. International Journal For Numerical and Analytical Methods In Geomechanics, 22, 1621-653.YuH. S.1998Casm: A unified state parameter model for clay and sandInternational Journal For Numerical and Analytical Methods In Geomechanics22162165310.1002/(SICI)1096-9853(199808)22:8<621::AID-NAG937>3.0.CO;2-8Search in Google Scholar

Yu, H. S. (2006). Plasticity and geotechnics. Springer.YuH. S.2006Plasticity and geotechnicsSpringerSearch in Google Scholar

Zytynski, M., Randolph, M. F., & Wroth, C. P. (1978). On modelling the unloading-reloading behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2, 87-94.ZytynskiM.RandolphM. F.&WrothC. P.1978On modelling the unloading-reloading behaviour of soilsInternational Journal for Numerical and Analytical Methods in Geomechanics2879410.1002/nag.1610020107Search in Google Scholar

eISSN:
2083-831X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics