1. bookVolumen 71 (2022): Edición 1 (January 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2509-8934
Primera edición
22 Feb 2016
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
access type Acceso abierto

Retrotransposon-based markers revealed a repartition depending on geographical origin and breeding status of Tunisian pistachio species

Publicado en línea: 27 Feb 2022
Volumen & Edición: Volumen 71 (2022) - Edición 1 (January 2022)
Páginas: 1 - 9
Detalles de la revista
License
Formato
Revista
eISSN
2509-8934
Primera edición
22 Feb 2016
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
Abstract

Retrotransposon movements are considered to be an important factor in evolutionary processes and speciation as well as a source of genetic variation. In order to analyze genetic diversity and population structure in Tunisian pistachio species, nine inter-retrotransposon amplified polymorphism (IRAP) markers were used. As a result, eighty-six amplicons were produced among which 98.15 % were polymorphic. Mean numbers of the effective number of alleles (Ne), Shannon’s information index (I) and Nei’s genetic diversity (H) were respectively 1.529, 0.478, and 0.310. The average within-population genetic diversity (Hs) was 0.24 and the total diversity (Ht) was 0.3. The Tunisian pistachio populations exhibited high genetic differentiation (Gst =0.275) and gene flow (Nm = 1.888). The Analysis of Molecular Variance (AMOVA) indicated that variation was very high within populations (83 %). Phylogenetic tree using neighbor- joining (NJ) method and Principal Coordinates Analysis (PCoA) depicted that groupings of Tunisian varieties were made independently of the sex of the trees, but depending on their geographical origin and their breeding status. The modelbased Bayesian clustering (STRUCTURE) confirmed these observations. The inter-retrotransposons amplification polymorphism markers were significantly informative at the interspecific level. Findings reported in our study will be essential toward breeding for new pistachio genotypes with developed chemical and horticultural features.

Keywords

Abidi W (2016) Pomological and physical attributes of pistachio (Pistacia vera L.) varieties grown in west-central Tunisia. Journal of new sciences, Agriculture and Biotechnology 28(4), 1582-1588 Search in Google Scholar

Achrem M, Kalinka A, Rogalska SM (2014) Assessment of genetic relationships among Secale taxa by using ISSR and IRAP markers and the chromosomal distribution of the AAC microsatellite sequence. Turkish Journal of Botany 38(2), 213-225. https://doi:10.3906/bot-1207-1226 Search in Google Scholar

Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome research. 16(1), 203-215 https://doi.org/10.1007/s10577-007-1202-610.1007/s10577-007-1202-6 Search in Google Scholar

Branco CJS, Vieira EA, Malone G, et al. (2007) IRAP and REMAP assessments of genetic similarity in Rice (Oryza sativa). Journal of Applied Genetics 48(2), 107-113. https://doi.org/10.1007/BF0319466710.1007/BF03194667 Search in Google Scholar

Chatti K, Choulak S, Guenni K, Salhi-Hannachi A (2017) Genetic diversity analysis using morphological parameters in Tunisian Pistachio (Pistacia vera L.). Journal of Research in Biology Sciences, 02: 29-34 Search in Google Scholar

Dent EA (2014) STRUCTURE HARVESTER version 0.694. http://taylor0.biology.ucla.edu/structureHarvester/. Search in Google Scholar

Ellstrand NC (2014) Is gene flow the most important evolutionary force in plants? Am. J. Bot. 101(5), 737-753. https://doi.org/10.3732/ajb.140002410.3732/ajb.1400024 Search in Google Scholar

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol.14, 2611-2620. https://doi.org/10.1111/j.1365-294x.2005.02553.x10.1111/j.1365-294X.2005.02553.x Search in Google Scholar

Faostat (2017) http://www.fao.org/faostat/en/data/QC Search in Google Scholar

Felsenstein J (1995) PHYLIP (Phylogeny Interference Package) version 3,5 c. Department of Genetics, University of Washington, Seattle, Washington Search in Google Scholar

Ghislain M, Zhang DP, Fajardo D, Huamán Z, Hijmans RJ (1999) Marker-assisted sampling of the cultivated Andean potato Solanumphureja collection using RAPD markers. Genetic Resources and Crop Evolution 46, 547-555. https://doi.org/10.1023/A:100872400788810.1023/A:1008724007888 Search in Google Scholar

Hachicha M, Ben Aissa I (2014) Managing salinity in Tunisian oases. Life Sciences Journal 8(9), 775-782. https://doi.org/10.17265/1934-7391/2014.09.00710.17265/1934-7391/2014.09.007 Search in Google Scholar

Hamdi HK, Nishio H, Tavis J, Zielinski R, Dugaiczyk A (2000) Alu-mediated phylogenetic novelties in gene regulation and development. Journal of Molecular Biology 299(4), 931-939. https://doi.org/10.1006/jmbi.2000.379510.1006/jmbi.2000.3795 Search in Google Scholar

Hamrick JL, Murawski DA, Nason JD (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetation 107(1), 281-297. https://doi.org/10.1007/BF0005223010.1007/BF00052230 Search in Google Scholar

Holland JB (2001) Epistasis and plant breeding. Plant Breeding. Reviews. 21, 2792. https://doi.org/10.1002/9780470650196.ch210.1002/9780470650196.ch2 Search in Google Scholar

Jiang LF, Qi X, Zhang XQ, Huang LK, Ma X, Xie WG (2014) Analysis of diversity and relationships among orchardgrass (Dactylis glomerata L.) accessions using start codon-targeted markers. Genetic Molecular. Research 13, (2): 4406-4418. https://doi.org/10.4238/2014.june.11.410.4238/2014.June.11.4 Search in Google Scholar

Kafkas S, Hakan O, Bekir E, Izzet A, Halit Seyfettin A, Sonay K (2006) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: Comparison of AFLP, ISSR, and RAPD markers.” Journal of the American Society for Horticultural Science 131.4, 522-529. https://doi.org/10.21273/JASHS.131.4.52210.21273/JASHS.131.4.522 Search in Google Scholar

Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theoretical and Applied Genetics 98: 704-711. https://doi.org/10.1007/s00122005112410.1007/s001220051124 Search in Google Scholar

Kalendar R and AH Schulman (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nature Protocols. 1(5), 2478-2484. https://doi:10.1038/nprot.2006.37710.1038/nprot.2006.377 Search in Google Scholar

Kalendar R, Schulman AH (2014) Transposon-based tagging: IRAP, REMAP, and iPBS. Methods Molecular Biology (1115) 233-55. https://doi:10.1007/978-1-62703-767-9_1210.1007/978-1-62703-767-9_12 Search in Google Scholar

Karimi A, Saeidi H (2016) Genetic diversity of Sorghum halepense (L.) Pers. in Iran as revealed by IRAP markers. Plant. Genetic. Resources. 14(2), 132-141. https://doi.org/10.1017/S147926211500016710.1017/S1479262115000167 Search in Google Scholar

Maggs DH (1973) Genetic resources in pistachio. Plant. Genet. Resources. Newsletter. 29: 7-15 Search in Google Scholar

Mansour A (2008) Utilization of genomic retrotransposons as cladistics markers. Journal of Cell and Molecular Biology: 7, 17-28 Search in Google Scholar

McDermott JM and BA McDonald (1993) Gene flow in plant pathosystems. Annual Review of Phytopathology: 31(1), 353-37310.1146/annurev.py.31.090193.002033 Search in Google Scholar

Mlika M (1980) Contribution à l’étude du pistachier en Tunisie : Choix de variétés mâles et femelles à floraison synchrone- Anatomie des fleurs. Mémoire de fin d’études du cycle de spécialisation INAT, Tunisie Search in Google Scholar

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature. 403(6772), 853-858. https://doi.org/10.1038/3500250110.1038/35002501 Search in Google Scholar

Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA.76(10): 5269-5273. https://doi.org/10.1073/pnas.76.10.526910.1073/pnas.76.10.5269 Search in Google Scholar

Page RDM (1996) TREEVIEW: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci.12, 357-358. https://doi.org/10.1093/bioinformatics/12.4.35710.1093/bioinformatics/12.4.357 Search in Google Scholar

Pazouki L, Mardi M, Shanjani PS, et al. (2010) Genetic diversity and relationships among Pistacia species and cultivars. Conservation Genetics 11, 311–318. https://doi.org/10.1007/s10592-009-9812-510.1007/s10592-009-9812-5 Search in Google Scholar

Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes.6, 288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x10.1111/j.1471-8286.2005.01155.x Search in Google Scholar

Prevost A, Wilkinson M (1999) A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics 98, 107-112. https://doi.org/10.1007/s00122005104610.1007/s001220051046 Search in Google Scholar

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics.155, 945-95910.1093/genetics/155.2.945 Search in Google Scholar

Risterucci AM, Grivet L, N’goran J, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theoretical and Applied Genetics 101(5), 948-955. https://doi.org/10.1007/s00122005156610.1007/s001220051566 Search in Google Scholar

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology Evolution 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a04045410.1093/oxfordjournals.molbev.a040454 Search in Google Scholar

Senkova S, Ziarovska J, Bezo M (2013) Utilization of IRAP technique for plums genotypes differentiation. Biosci. Res. 10(1), 01-07 Search in Google Scholar

Smykal P, Bacova-Kerteszova N, Kalendar R, Corander J, Schulman AH, Pavelek M (2011) Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theoretical and Applied Genetics 122(7), 1385-1397. https://doi.org/10.1007/s00122-011-1539-210.1007/s00122-011-1539-2 Search in Google Scholar

Strioto D, Kuhn B, Nagata W, Marinelli G, Oliveira-Collet S, Mangolin C, Machado M (2019) Development and use of retrotransposons-based markers (IRAP/REMAP) to assess genetic divergence among table grape cultivars. Plant Genetic Resources: Characterization and Utilization. 17(3), 272-279. https://doi:10.1017/S147926211900002910.1017/S1479262119000029 Search in Google Scholar

Techen N, Crockett SL, Khan IA, Scheffler BE (2004) Authentication of medicinal plants using molecular biology techniques to compliment conventional methods. Current Medicinal Chemistry 11(11), 1391-1401. https://doi.org/10.2174/092986704336520610.2174/0929867043365206 Search in Google Scholar

Wadley G, Martin A (1993) The origins of agriculture: a biological perspective and a new hypothesis. Australian Biologist 6, 96-105 Search in Google Scholar

Waugh R, McLean K, Flavell AJ, Pearce SR, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Molecular and General Genetics 253, 687-694. https://doi.org/10.1007/s00438005037210.1007/s004380050372 Search in Google Scholar

Yeh F, Yang R, Boyle T (1999) POPGENE Version 1.31, Microsoft Windows-Based Freeware for Population Genetic Analysis. Quick User Guide; University of Alberta. Edmonton, AB, Canada Search in Google Scholar

Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: the intersection of genetics and archaeology. Trends in Genetics 22, 139-55. https://doi.org/10.1016/j.tig.2006.01.00710.1016/j.tig.2006.01.007 Search in Google Scholar

Zohary D (1996) The genus Pistacia L. In Taxonomy, distribution, conservation and uses of Pistacia genetic resources, Padulosi S, Caruso T, Barone E (eds) (IPGRI, Palermo), pp. 1-11 Search in Google Scholar

Zohary D, Hopf M, Weiss E (2012) Domestication of Plants in the Old World. The origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin. Oxford University Press, UK. 264p. https://doi.org/10.1093/acprof:osobl/9780199549061.001.000110.1093/acprof:osobl/9780199549061.001.0001 Search in Google Scholar

Ziya Motalebipour E, Kafkas S, Khodaeiaminjan M, et al. (2016) Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: Development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics 17, 998. https://doi.org/10.1186/s12864-016-3359-x10.1186/s12864-016-3359-x Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo