[
[1] Adams S.M. and Agelovric J.W. 1970. Assimilation of detritus and associated bacteria by three species of estuarine animals. Chesapeake Sci. 11:249–254. http://dx.doi.org/10.2307/135110010.2307/1351100
]Search in Google Scholar
[
[2] Baker J.H. and Bradnam L.A. 1976. The role of bacteria in the nutrition of aquatic detritivores. Oecologia 24:95–104. http://dx.doi.org/10.1007/BF0057275310.1007/BF0057275328309329
]Search in Google Scholar
[
[3] Baldy V., Chauvet E., Charcosset J.Y. and Gessner M.O. 2002. Microbial dynamics associated with leaves decomposing in the mainstem and floodplain of a large river. Aquat. Microb. Ecol. 28:25–36. http://dx.doi.org/10.3354/ame02802510.3354/ame028025
]Search in Google Scholar
[
[4] Barlocher F. 1985. The role of fungi in the nutrition of stream invertebrates. J. Linnean Soc. Bot. 91:83–94. http://dx.doi.org/10.1111/j.1095-8339.1985.tb01137.x10.1111/j.1095-8339.1985.tb01137.x
]Search in Google Scholar
[
[5] Barlocher F. and Kendrick B. 1975. Leaf-conditioning by microorganisms. Oceologia 20:359–362. http://dx.doi.org/10.1007/BF0034552610.1007/BF0034552628308709
]Search in Google Scholar
[
[6] Boak A.C. and Goulder R. 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber Estuary. Mar Biol 73:139–149. http://dx.doi.org/10.1007/BF0040688110.1007/BF00406881
]Search in Google Scholar
[
[7] Boulton A.J. and Boon P.I. 1991. A review of methodology used to measure leaf litter decomposition in lotic environments: Time to turn over an old leaf? Austral. J. Mar. Freshw. Res. 42:1–43. http://dx.doi.org/10.1071/MF991000110.1071/MF9910001
]Search in Google Scholar
[
[8] Caraco N.F., Lampman G., Cole J.J., Limburg K.E., Pace M.L., and Fischer D. 1998. Microbial assimilation of DIN in a nitrogen rich estuary: Implications for food quality and isotope studies. Mar Ecol Prog Ser 167:59–71 http://dx.doi.org/10.3354/meps16705910.3354/meps167059
]Search in Google Scholar
[
[9] Cummins K.W. 1974. Structure and function of stream ecosystems. Bioscience 24:631–641. http://dx.doi.org/10.2307/129667610.2307/1296676
]Search in Google Scholar
[
[10] Delwiche C.C. and Steyn P. 1970. Nitrogen isotope fractionation in soils and microbial reactions. Plant Soil 48:57–80. 10.1021/es60046a004
]Search in Google Scholar
[
[11] DeNiro C.C. and Epstein S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45:341–353. http://dx.doi.org/10.1016/0016-7037(81)90244-110.1016/0016-7037(81)90244-1
]Search in Google Scholar
[
[12] Findlay S. and Tenore K. 1982. Nitrogen source for a detritivore: Detritus substrate versus associated microbes. Science 218:371–373. http://dx.doi.org/10.1126/science.218.4570.37110.1126/science.218.4570.37117739355
]Search in Google Scholar
[
[13] Findlay S.E., Meyer J.L. and Smith P.J. 1984. Significance of bacterial biomass in the nutrition of a freshwater isopod (Lirceus sp.). Oecologia 63:38–42. http://dx.doi.org/10.1007/BF0037978210.1007/BF0037978228311163
]Search in Google Scholar
[
[14] Findlay S.E., Meyer J.L. and Smith P.J. 1986. Contribution of fungal biomass to the diet of a freshwater isopod (Lirceus sp.). Freshw. Biol. 16:377–385. http://dx.doi.org/10.1111/j.1365-2427.1986.tb00978.x10.1111/j.1365-2427.1986.tb00978.x
]Search in Google Scholar
[
[15] France R. 1994. Nitrogen isotopic composition of marine and freshwater invertebrates. Mar. Ecol. Prog. Ser. 115:205–207. http://dx.doi.org/10.3354/meps11520510.3354/meps115205
]Search in Google Scholar
[
[16] France R. 1995a. Differentiation between littoral and pelagic foodwebs in lakes using stable carbon isotopes. Limnol. Oceanogr. 40:1310–1313. http://dx.doi.org/10.4319/lo.1995.40.7.131010.4319/lo.1995.40.7.1310
]Search in Google Scholar
[
[17] France R.L. 1995b. Source variability in σ
15N of autotrophs as a potential aid in measuring allochthony to freshwaters. Ecography 18:318–320. http://dx.doi.org/10.1111/j.1600-0587.1995.tb00134.x10.1111/j.1600-0587.1995.tb00134.x
]
[
[18] France R. 1995c. Carbon-13 enrichment in benthic compared to planktonic algae: Foodweb implications. Mar. Ecol. Prog. Ser. 124:307–312. http://dx.doi.org/10.3354/meps12430710.3354/meps124307
]Search in Google Scholar
[
[19] France R.L. 1996a. Absence or masking of metabolic fractionations of
13C in a freshwater benthic food web. Freshw. Biol., 36:1–6. http://dx.doi.org/10.1046/j.1365-2427.1996.00052.x10.1046/j.1365-2427.1996.00052.x
]
[
[20] France R. 1996b. Ontogenetic shift in crayfish ð13C as a measure of landwater ecotonal coupling. Oecologia 107:239–242. http://dx.doi.org/10.1007/BF0032790810.1007/BF0032790828307310
]Search in Google Scholar
[
[21] France R.L. 1996c. Scope for use of stable carbon isotopes in discerning the incorporation of forest detritus into aquatic foodwebs. Hydrobiologia 325:219–222. http://dx.doi.org/10.1007/BF0001498710.1007/BF00014987
]Search in Google Scholar
[
[22] France R.L. 1997a. σ
15N examination of the Lindeman-Hutchinson-Peters theory of increasing omnivory with trophic height in aquatic foodwebs. Res. Pop. Ecol. 39:121–125. http://dx.doi.org/10.1007/BF0276525710.1007/BF02765257
]
[
[23] France R.L. 1997b. The importance of beaver lodges in structuring littoral communities in boreal headwater lakes. Can. J. Zool. 75:1009–1013. http://dx.doi.org/10.1139/z97-12110.1139/z97-121
]Search in Google Scholar
[
[24] France R.L. 1997c. Macroinvertebrate colonization of woody debris in Canadian Shield lakes following riparian clearcutting. Conserv. Biol. 11:513–527. http://dx.doi.org/10.1046/j.1523-1739.1997.95289.x10.1046/j.1523-1739.1997.95289.x
]Search in Google Scholar
[
[25] France R.L. 1997d. Stable carbon and nitrogen isotopic evidence for ecotonal coupling between boreal forests and fishes. Ecol. Freshw. Fish. 6:78–83. http://dx.doi.org/10.1111/j.1600-0633.1997.tb00147.x10.1111/j.1600-0633.1997.tb00147.x
]Search in Google Scholar
[
[26] France R. 1998a. Density-weighted ð
13C analysis of detritivory and algivory in littoral macroinvertebrate communities of boreal headwater lakes. Ann. Zool. Fenn. 35:187–193.
]
[
[27] France R.L. 1998b. Colonization of leaf litter by littoral macroinvertebrates with reference to successional changes in boreal tree composition expected after riparian clear-cutting. Amer. Midl. Nat. 14:314–324. 10.1674/0003-0031(1998)140[0314:COLLBL]2.0.CO;2
]Search in Google Scholar
[
[28] France R.L. and Peters R.H. 1997. Ecosystem differences in the trophic enrichment of
13C in aquatic foodwebs. Can. J. Fish. Aquat. Sci. 54:1255–1258. http://dx.doi.org/10.1139/f97-04410.1139/f97-044
]
[
[29] France R., Westcott K., del Giorgio P., Klein G.and Kalff J. 1996. Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes. Res. Pop. Ecol. 38:283–287. http://dx.doi.org/10.1007/BF0251573810.1007/BF02515738
]Search in Google Scholar
[
[30] France R., del Giorgio P. and Westcott K. 1997. Productivity and heterotrophy influences on zooplankton ð
13C in northern temperate lakes. Aquat. Microb. Ecol. 12:85–93. http://dx.doi.org/10.3354/ame01208510.3354/ame012085
]
[
[31] France R., Chandler M. and Peters R..1998a. Mapping trophic continua of benthic foodwebs: Body size — σ
15N relationships. Mar. Ecol. Prog. Ser. 174:301–306. http://dx.doi.org/10.3354/meps17430110.3354/meps174301
]
[
[32] France R., Holmquist J., Chandler M. and Cattaneo A. 1998b. σ15N evidence for nitrogen fixation associated with macroalgae from a seagrass-mangrove-coral reef system. Mar. Ecol. Prog. Ser. 167:297–299. http://dx.doi.org/10.3354/meps16729710.3354/meps167297
]Search in Google Scholar
[
[33] Fry B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72:2293–2297. http://dx.doi.org/10.2307/194158010.2307/1941580
]Search in Google Scholar
[
[34] Gulis V and Suberkropp K. 2003. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134. http://dx.doi.org/10.1046/j.1365-2427.2003.00985.x10.1046/j.1365-2427.2003.00985.x
]Search in Google Scholar
[
[35] Hall R.D. and Meyer J.L. 1998. The trophic significance of bacteria in a detritus based stream food web. Ecology 79:1995–2012. http://dx.doi.org/10.1890/0012-9658(1998)079[1995:TTSOBI]2.0.CO;2
]Search in Google Scholar
[
[36] Hicks B.J. and Laboyrie J.E. 1999. Preliminary estimates of mass-loss rates, changes in stable isotope composition, and invertebrate colonization of evergreen and deciduous leaves in a Waikato, New Zealand, stream. New Zeal. J Mar Freshw Res 33:221–232. http://dx.doi.org/10.1080/00288330.1999.951687210.1080/00288330.1999.9516872
]Search in Google Scholar
[
[37] Kaushik N.K. and Hynes H.B.N. 1971. The fate of dead leaves that fall into streams. Archiv. fur Hydrobiol. 68:465–515.
]Search in Google Scholar
[
[38] Kostalos M. and Seymour L.R. 1976. Role of microbial enriched detritus in the nutrition of Gammarus minus. Oikos 27:512–516. http://dx.doi.org/10.2307/354347110.2307/3543471
]Search in Google Scholar
[
[39] Lehmann M.F., Bernasconi S.M., Barbieri A., McKenzie J.A. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta 20:3573–3584. http://dx.doi.org/10.1016/S0016-7037(02)00968-710.1016/S0016-7037(02)00968-7
]Search in Google Scholar
[
[40] Levinton J.S., Bianchi, T.S. and Stewart, S. 1984. What is the role of particulate organic matter in benthic invertebrate nutrition? Bull. Mar. Sci. 35:270–282.
]Search in Google Scholar
[
[41] Libes S.M., and Deuser W.G. 1988. The isotope geochemistry of particulate nitrogen in the Peru upwelling area and the Gulf of Maine. Deep Sea Res. Part A 35:517–533. http://dx.doi.org/10.1016/0198-0149(88)90129-X10.1016/0198-0149(88)90129-X
]Search in Google Scholar
[
[42] Macko S.A. and Estip M. 1984. Microbial alteration of stable nitrogen and carbon isotopic composition of organic matter. Organ. Geochem. 6:787–790. http://dx.doi.org/10.1016/0146-6380(84)90100-110.1016/0146-6380(84)90100-1
]Search in Google Scholar
[
[43] McGoldrick D.L., Barton D.R., Power M., Scott R.W. and Butler B.J. 2008. Dynamics of bacteria-substrate stable isotope separation: Dependence on substrate availability and implications for aquatic food web studies. Can J Fish Aquat Sci 65:1983–1190. http://dx.doi.org/10.1139/F08-10910.1139/F08-109
]Search in Google Scholar
[
[44] Melillo J.M., Aber J.D., Linkins A.E., Ricca A., Fry B. and Nadelhoffer K.J. 1989. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant Soil 115:189–198. http://dx.doi.org/10.1007/BF0220258710.1007/BF02202587
]Search in Google Scholar
[
[45] Miluc T. and Toetz D. 1984. Determination of diets of alpine aquatic insects using stable isotopes and gut analyses. Amer. Midl. Natur. 131:146–155.
]Search in Google Scholar
[
[46] Minshall G.W. 1978. Autotrophy in stream ecosystems. Bioscience 28:767–771. http://dx.doi.org/10.2307/130725010.2307/1307250
]Search in Google Scholar
[
[47] Moran M.A. and Hodson R.E. 1989. Bacterial secondary production on vascular plant detritus: Relationships to detritus composition and degradation rate. Appl. Environ. Microbiol. 55:2178–2189. 10.1128/aem.55.9.2178-2189.1989
]Search in Google Scholar
[
[48] Odum W.E., Kirk P.W. and Zieman J.C. 1978. Non-protein nitrogen compounds associated with particles of vascular plant detritus. Oikos 32:363–367. http://dx.doi.org/10.2307/354474610.2307/3544746
]Search in Google Scholar
[
[49] Owens N. 1987. Natural variations in σ
15N in the marine environment. Adv. Mar. Biol. 24:389–451. http://dx.doi.org/10.1016/S0065-2881(08)60077-210.1016/S0065-2881(08)60077-2
]
[
[50] Peterson B.J. and Fry B. 1987. Stable isotopes in ecosystem studies. Ann. Rev. Ecol. Sysem. 18:293–320. http://dx.doi.org/10.1146/annurev.es.18.110187.00145310.1146/annurev.es.18.110187.001453
]Search in Google Scholar
[
[51] Post D.M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83:703–718. http://dx.doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
]Search in Google Scholar
[
[52] Rice D.L. and Hanson R.B. 1984. A kinetic model for detritus nitrogen: Role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35:326–340.
]Search in Google Scholar
[
[53] Saino T and Hattori A. 1980. 15N natural abundance in oceanic suspended particulate matter. Science 286:2485–2488.
]Search in Google Scholar
[
[54] Schaefer P. and Ittekkot V. 1993. Seasonal variability of σ15N in settling particles in the Arabian Sea and its paleogeochemical significance. Nature 80:511–513.
]Search in Google Scholar
[
[55] Steedman R.J. 2000. Effects of experimental clearcut logging on water quality in three small boreal forest lake trout (Salvelinus namaycush) lakes. Can. J. Fish. Aquat. Sci. 57(Suppl. 2):92–96. http://dx.doi.org/10.1139/f00-11910.1139/f00-119
]Search in Google Scholar
[
[56] Steedman R.J. 2003. Littoral fish response to experimental logging around small boreal Shield lakes. North Amer. J. Fish. Manag. 23:392–403. http://dx.doi.org/10.1577/1548-8675(2003)023<0392:LFRTEL>2.0.CO;210.1577/1548-8675(2003)023<0392:LFRTEL>2.0.CO;2
]Search in Google Scholar
[
[57] Suberkropp K. and Klug M.J. 1976. Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–709. http://dx.doi.org/10.2307/193618410.2307/1936184
]Search in Google Scholar
[
[58] Turner G.L., Bergersen F.J. and Tantala H. 1983. Natural enrichment of
15N during decomposition of plant material in soil. Soil Biol. Biochem. 15:495–497. http://dx.doi.org/10.1016/0038-0717(83)90020-210.1016/0038-0717(83)90020-2
]
[
[59] Vanderklift M.A. and Ponsard S. 2003. Sources of variation in consumer-diet σ
15N enrichment: A meta-analysis. Oecologia 20:169–182. http://dx.doi.org/10.1007/s00442-003-1270-z10.1007/s00442-003-1270-z
]
[
[60] Vander Zanden M.J. and Rasmussen J.B. 2001. Variation in σ
15N and σ
13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46:2061–2066. http://dx.doi.org/10.4319/lo.2001.46.8.206110.4319/lo.2001.46.8.2061
]
[
[61] Webster J.R. and Benfield E.F. 1986. Vascular plant breakdown in freshwater ecosystems. Ann. Rev. Ecol. System. 17:567–594. http://dx.doi.org/10.1146/annurev.es.17.110186.00303110.1146/annurev.es.17.110186.003031
]Search in Google Scholar
[
[62] Wellman R.P., Cook F.D. and Krouse H.R. 1968. Nitrogen-15: Microbial alteration of abundance. Science 161:269–270. http://dx.doi.org/10.1126/science.161.3838.26910.1126/science.161.3838.2695657330
]Search in Google Scholar