Acceso abierto

In vivo inhibition of inducible nitric oxide synthase by aminoguanidine influences free radicals production and macrophage activity in Trichinella spiralis infected low responders (C57BL/6) and high responders (BALB/c) mice


Cite

[1] Alonso-Trujillo, J., Rivera-Montoya, I., Rodriguezsosa, M., Terrazas, L. I. (2007): Nitric oxide contributed to host resistance against experimental Taenia crassiceps cysticercosis. Parasitol. Res., 100: 1341–1350. DOI: 10.1007/s00436-006-0424-4 http://dx.doi.org/10.1007/s00436-006-0424-410.1007/s00436-006-0424-417206501Search in Google Scholar

[2] Andrade, M. A., Siles-Lucas, M., Lopez-Aban, J., Nogal-Ruiz, J. J., Perez-Arellano, J. J., Martinezfernandez, A. R., Muro, A. (2007): Trichinella: Differing effects of antigens from encapsulated and non-encapsulated species on in vitro nitric oxide production. Vet. Parasitol., 143: 86–90. DOI: 10.1016/j.vetpar.2006.07.026 http://dx.doi.org/10.1016/j.vetpar.2006.07.02610.1016/j.vetpar.2006.07.02616959431Search in Google Scholar

[3] Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., Freeman, B. A. (1990): Apparent hydroxyl radical production by peroxynitrite — implications for endothelial injury from nitric-oxide and superoxide. Proc. Natl. Acad. Sci. USA, 87: 1620–1624 http://dx.doi.org/10.1073/pnas.87.4.162010.1073/pnas.87.4.1620535272154753Search in Google Scholar

[4] Beiting, D. P., Bliss, S. K., Schafer, D. H., Roberts, V. L., Appleton, J. A. (2004): Interleukin-10 limits local and body cavity inflammation during infection with muscle-stage Trichinella spiralis. Infect. Immun., 72: 3129–3137. DOI: 10.1128/IAI.72.6.3129-3137.2004 http://dx.doi.org/10.1128/IAI.72.6.3129-3137.200410.1128/IAI.72.6.3129-3137.200441566415155614Search in Google Scholar

[5] Bhattacharjee, S., Gupta, G., Bhattacharya, P., Adhikari, A., Majumdar, S. B., Majumdar, S. (2009): Anti-IL-10 mAb protection against experimental visceral leishmaniasis via induction of Th1 cytokines and nitric oxide. Indian J. Exp. Biol., 47: 489–497 Search in Google Scholar

[6] Bian, K., Harari, Y., Zhong, M., Lai, M., Castro, G., Weisbrodt, N., Murad, F. (2001): Down-regulation of inducible nitric-oxide synthase (NOS-2) during parasiteinduced gut inflammation: a path to identify a selective NOS-2 inhibitor. Mol. Pharmacol., 59: 939–947 Search in Google Scholar

[7] Bian, K., Zhong, M., Harari, Y., Lai, M. G., Weisbrodt, N., Murad, F. (2005): Helminth regulation of host IL-4Rα/Stat6 signaling: Mechanism underlying NOS-2 inhibition by Trichinella spiralis. Proc. Natl. Acad. Sci. USA, 102: 3936–3941. DOI: 10.1073.pnas.0409461102 http://dx.doi.org/10.1073/pnas.040946110210.1073/pnas.040946110255480915741272Search in Google Scholar

[8] Boczoń, K., Wandurska-Nowak, E., Wierzbicki, A., Frydrychowicz, M., Mozerlisewska, I., Żeromski, J. (2004): m-RNA expression and immunohistochemical localization of inducible nitric oxide synthase (NOS-2) in the muscular niche of Trichinella spiralis. Folia Histochem. Cyto., 42: 209–213 Search in Google Scholar

[9] Bogdan, C. (2001): Nitric oxide and the immune response. Nat. Immunol., 2: 907–916 http://dx.doi.org/10.1038/ni1001-90710.1038/ni1001-90711577346Search in Google Scholar

[10] Brown, J. K., Donaldson, D. S., Wright, S. H., Miller, H. R. P. (2003): Mucosal mast cells and nematode infection: strain-specific differences in mast cell precursor frequency revisited. J. Helminthol., 77: 155–161. DOI: 10.1079/JOH2002160 http://dx.doi.org/10.1079/JOH200216010.1079/JOH200216012756069Search in Google Scholar

[11] Bueno, A. C., Seahorn, T. L., Cornick-Seahorn, J., Horohov, D. W., Moore, R. M. (1999): Plasma and urine nitric oxide concentrations in horses given a low dose of endotoxin. Am. J. Vet. Res., 60: 969–976 Search in Google Scholar

[12] Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A., Carvalho, L. J. M. (2011): Nitric oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. J. Infect. Dis., 203: 1454–1463. DOI: 10.1093/infdis/jir058 http://dx.doi.org/10.1093/infdis/jir05810.1093/infdis/jir058308088821415018Search in Google Scholar

[13] Cayatte, A. J., Palacino, J. J., Horten, K., Cohen, R. A. (1994): Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler. Tromb., 14: 753–759 http://dx.doi.org/10.1161/01.ATV.14.5.75310.1161/01.ATV.14.5.753Search in Google Scholar

[14] Cooke, J. P., Tsao, P. H. (1992): Cellular mechanisms of atherogenesis and the effects of nitric oxide. Curr. Opin. Cardiol., 7: 799–804 http://dx.doi.org/10.1097/00001573-199210000-0001310.1097/00001573-199210000-00013Search in Google Scholar

[15] Courderot-Masuyer, C., Dalloz, F., Maupoil, V., Rochette, L. (1999): Antioxidant properties of aminoguanidine. Fundam. Clin. Pharmacol., 13: 535–540. DOI: 10.1111/j.1472-8206.1999.tb00358.x http://dx.doi.org/10.1111/j.1472-8206.1999.tb00358.x10.1111/j.1472-8206.1999.tb00358.xSearch in Google Scholar

[16] Dai, W. J., Gottstein, B. (1999): Nitric oxide - mediated immunosuppression following murine Echinococcus multilocularis infection. Immunology, 97: 107–116. DOI: 10.1046/j.1365-2567.1999.00723.x http://dx.doi.org/10.1046/j.1365-2567.1999.00723.x10.1046/j.1365-2567.1999.00723.xSearch in Google Scholar

[17] Dąbrowska, J., Walski, M., Grytner-Zięcina, B., Machnicka-rowińska, B., Dziemian, E., Jankowskasteifer, E. (2004): Ultrastructural analysis of capsule and nurse cell morphology examined seven months after Trichinella spiralis mouse infection (in Polish). Wiad. Parazytol., 50: 279–284 Search in Google Scholar

[18] Derda, M., Hadaś, E. (2000): Antioxidants and proteolytic enzymes in experimental trichinellosis. Acta Parasitol., 45: 356–361 Search in Google Scholar

[19] Derda, M., Wandurska-Nowak, E., Hadaś, E. (2004): Changes in the level of antioxidants in the blood from mice infected with Trichinella spiralis. Parasitol. Res., 93: 207–210. DOI: 10.1007/s00436-004-1093-9 http://dx.doi.org/10.1007/s00436-004-1093-910.1007/s00436-004-1093-9Search in Google Scholar

[20] Ding, A. H., Nathan, C. F., Stuehr, D. J. (1988): Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol., 141: 2407–2412 10.4049/jimmunol.141.7.2407Search in Google Scholar

[21] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2011): Development of cellular immune response of mice to infection with low doses of Trichinella spiralis, Trichinella britovi and Trichinella pseudospiralis larvae. Parasitol. Res., 108: 169–176. DOI: 10.1007/s00436-010-2049-x http://dx.doi.org/10.1007/s00436-010-2049-x10.1007/s00436-010-2049-xSearch in Google Scholar

[22] Dvorožňáková, E., Hurníková, Z., Kołodziejsobocińska, M. (2010): Kinetics of specific humoral immune response of mice infected with low doses of Trichinella spiralis, T. brotovi, and T. pseudospiralis larvae. Helminthologia, 47(3): 152–157. DOI: 10.2478/s11687-010-0023-x http://dx.doi.org/10.2478/s11687-010-0023-x10.2478/s11687-010-0023-xSearch in Google Scholar

[23] Dvorožňáková, E., Kołodziej-Sobocińska, M., Hurníková, Z. (2005): Development of T-cell immune response in experimental murine trichinellosis. Helminthologia, 42: 187–196 Search in Google Scholar

[24] Eisenstein, T. K., Huang, D., Meissler, J. J. Jr., Alramadi, B. (1994): Macrophage nitric oxide mediates immunosupression in infectious inflammation. Immunobiology, 191: 493–502. DOI: 10.1016/S0171-2985(11)80455-9 http://dx.doi.org/10.1016/S0171-2985(11)80455-910.1016/S0171-2985(11)80455-9Search in Google Scholar

[25] Faulkner, H., Humphreys, N., Renauld, J. C., van Snick, J., Grencis, R. (1997): Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol., 27: 2536–2540. DOI: 10.1002/eji.1830271011 http://dx.doi.org/10.1002/eji.183027101110.1002/eji.18302710119368607Search in Google Scholar

[26] Garside, P., Hutton, A. K., Severn, A., Liew, F. Y., Mc Mowat, A. I. (1992): Nitric oxide mediates intestinal pathology in graft-vs.-host disease. Eur. J. Immunol., 22: 2141–2145. DOI: 10.1002/eji.180220827 http://dx.doi.org/10.1002/eji.1830220827Search in Google Scholar

[27] Giardino, I., Fard, A. K., Hatchell, D. L., Brownlee, M. (1998): Aminoguanidine inhibits reactive oxygen species formation, lipid peroxidation, and oxidant-induced apoptosis. Diabetes, 47: 1114–1120. DOI: 10.2337/diabetes.47.7.1114 http://dx.doi.org/10.2337/diabetes.47.7.111410.2337/diabetes.47.7.11149648836Search in Google Scholar

[28] Granger, D. L., Hibbs, J. B. Jr., Broadnax, L. M. (1991): Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NGmonomethyl- L-arginine. J. Immunol., 146: 1294–1302 Search in Google Scholar

[29] Griffiths, M. J. D., Messent, M., Mac Allister, R. J., Evans, T. W. (1993): Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br. J. Pharmacol., 110: 963–968 http://dx.doi.org/10.1111/j.1476-5381.1993.tb13907.x10.1111/j.1476-5381.1993.tb13907.x21758147507781Search in Google Scholar

[30] Gruden-Movsesijan, A., Sofronic-Milosavljevic, L. 2010): Experimental trichinellosis in rats - peritoneal macrophage activity. Arch. Biol. Sci. Belgrade, 62: 15–22. DOI: 10.2298/ABS1001015G http://dx.doi.org/10.2298/ABS1001015G10.2298/ABS1001015GSearch in Google Scholar

[31] Helmby, H., Grencis, R. K. (2003): IFN-gammaindependent effects of IL-12 during intestinal nematode infection. J. Immunol., 171: 3691–3696 Search in Google Scholar

[32] Hogaboam, C. M., Collins, S. M., Blennerhasset, M. G. 1996): Efectes of oral L-NAME during Trichinella spiralis infection in rats. Am. J. Physiol., 271: G338–G346 10.1152/ajpgi.1996.271.2.G338Search in Google Scholar

[33] James, S. L. (1995): Role of nitric oxide in parasitic infections. Microbiol. Rev. 59: 533–547 Search in Google Scholar

[34] Karmańska, K., Houszka, M., Widyma, A., Stefaniak, E. 1997): Macrophages during infection with Trichinella spiralis in mice. Wiad. Parazytol., 43: 245–249 Search in Google Scholar

[35] Khan, W. I., Vallance, B. A., Blennerhassett, P. A., Deng, Y., Verdu, E. F., Matthaei, K. I., Collins, S. M. 2001): Critical role for signal transducer and activator of transcription factor 6 in mediating intestinal muscle hypercontractility and worm expulsion in Trichinella spiralis-infected mice. Infect. Immun., 69: 838–844. DOI: 10.1128/IAI.69.2.838-844.2001 http://dx.doi.org/10.1128/IAI.69.2.838-844.200110.1128/IAI.69.2.838-844.2001Search in Google Scholar

[36] Kolb, H., Kolb-Bachofen, V. (1992): Nitric oxide: a pathogenic factor in autoimmunity. Immunol. Today, 13: 157–160. DOI: 10.1016/0167-5699(92)90118-Q http://dx.doi.org/10.1016/0167-5699(92)90118-Q10.1016/0167-5699(92)90118-QSearch in Google Scholar

[37] Kołodziej-Sobocińska, M., Dvorožňáková, E., Dziemian, E. (2006a): Trichinella spiralis: macrophage activity and antibody response in chronic murine infection. Exp. Parasitol., 112: 52–62. DOI: 10.1016/j.exppara.2005.09.004 http://dx.doi.org/10.1016/j.exppara.2005.09.00410.1016/j.exppara.2005.09.004Search in Google Scholar

[38] Kołodziej-Sobocińska, M., Dziemian, E., Machnickarowińska, B. (2006b): Inhibition of nitric oxide production by aminoguanidine influences the number of Trichinella spiralis parasites in infected “low responders” C57BL/6) and “high responders” (BALB/c) mice. Parasitol. Res., 99: 194–196. DOI: 10.1007/s00436-006-0144-9 http://dx.doi.org/10.1007/s00436-006-0144-910.1007/s00436-006-0144-9Search in Google Scholar

[39] Kołodziej-sobocińska, M., Dvorožňáková, E., Dziemian, E., Machnicka-rowińska, B. (2007): Trichinella spiralis reinfection: macrophage activity in BALB/c mice. Parasitol. Res., 101: 629–637. DOI: 10.1007/s00436-007-0527-6 http://dx.doi.org/10.1007/s00436-007-0527-610.1007/s00436-007-0527-6Search in Google Scholar

[40] Liew, F. Y. (1993): The role of nitric oxide in parasitic diseases. Ann. Trop. Med. Parasitol., 87: 637–642 Search in Google Scholar

[41] Liew, F.Y., Millott, S., Parkinson, C., Palmer, R.M., Moncada, S. (1990): Macrophage killing of Leishmania parasite in vivo is mediated by nitric oxide from L-arginine. J. Immunol., 144: 4794–4797 Search in Google Scholar

[42] Liew, F. Y., Wei, X. Q., Proudfoot, L. (1997): Cytokines and nitric oxide as effector molecules against parasitic infections. Phil. Trans. R. Soc. Lond. B., 352: 1311–1315 http://dx.doi.org/10.1098/rstb.1997.011510.1098/rstb.1997.0115Search in Google Scholar

[43] Luss, H., Di Silvio, M., Litton, A. L., Molina, Y., Vedia, L., Nussler, A. K., Billiar, T. R. (1994): Inhibition of nitric oxide synthesis enhances the expression of inducible nitric oxide synthase mRNA and protein in a model of chronic liver inflammation. Biochem. Biophys. Res. Commun., 204: 635–640. DOI: 10.1006/bbrc.1994.2506 http://dx.doi.org/10.1006/bbrc.1994.250610.1006/bbrc.1994.2506Search in Google Scholar

[44] Luss, H., Li, R. K., Shapiro, R. A., Tzeng, E., Mc Gowan, F. X., Yoneyama, T., Hatakeyama, K., Geller, D. A., Mickle, D. A., Simmons, R. L., Billiar, T. R. (1997): Differentiated human ventricular cardiac myocytes express inducible nitric oxide synthase mRNA but not protein in response to IL-1, TNF, IFN-gamma, and LPS. J. Mol. Cell. Cardiol., 29: 1153–1165. DOI: 10.1006/jmcc.1996.0349 http://dx.doi.org/10.1006/jmcc.1996.034910.1006/jmcc.1996.0349Search in Google Scholar

[45] Mills, C. D., Kincaid, K., Alt, J. M., Heilman, M. J., Hill, A. M. (2000): M-1 / M-2 macrophages and the Th1/Th2 paradigm. J. Immunol., 164: 6166–6173 Search in Google Scholar

[46] Misko, T. P., Moore, W. M., Kasten, T. P., Nickols, G. A., Corbett, J. A., Tilton, R. G., Mc Daniel, M. L., Williamson, J. R., Currie, M. G. (1993): Selective inhibition of the inducible nitric oxide synthase by aminoguanidine. Eur. J. Pharmacol., 233: 119–125. DOI: 10.1016/0014-2999(93)90357-N http://dx.doi.org/10.1016/0014-2999(93)90357-N10.1016/0014-2999(93)90357-NSearch in Google Scholar

[47] Morley, J. E., Flood, J. F. (1991): Evidence that nitric oxide modulates food intake in mice. Life Sci., 49: 707–711 http://dx.doi.org/10.1016/0024-3205(91)90102-H10.1016/0024-3205(91)90102-HSearch in Google Scholar

[48] Olesen, J., Thomsen, L. L., Iversen, H. (1994): Nitric oxide is a key molecule in migraine and other vascular headaches. Trends Pharmacol. Sci., 15: 149–153. DOI: 10.1016/0165-6147(94)90075-2 http://dx.doi.org/10.1016/0165-6147(94)90075-210.1016/0165-6147(94)90075-2Search in Google Scholar

[49] Pacelli, R., Wink, D. A., Cook, J. A., Krishna, M. C., Degraff, W., Friedman, N., Tsokos, M., Samuni, A., Mitchell, J. B. (1995): Nitric oxide potentates hydrogen peroxide-induced killing of Escherichia coli. J. Exp. Med., 182: 1469–1479 http://dx.doi.org/10.1084/jem.182.5.146910.1084/jem.182.5.1469Search in Google Scholar

[50] Pacher, P., Beckman, J. S., Liaudet, L. (2007): Nitric oxide and peroxynitrite in health and disease. Physiol. Rev., 87: 315–424. DOI: 10.1152/physrev.00029.2006 http://dx.doi.org/10.1152/physrev.00029.200610.1152/physrev.00029.2006Search in Google Scholar

[51] Pick, E. (1986): Microassays for superoxide and hydrogen peroxide production and nitroblue tetrazolium reduction using an enzyme immunoassay microplate reader. Methods Enzymol., 132: 407–421. DOI: 10.1016/S0076-6879(86)32026-3 http://dx.doi.org/10.1016/S0076-6879(86)32026-310.1016/S0076-6879(86)32026-3Search in Google Scholar

[52] Rajan, T. V., Porte, P., Yates, J. A., Keefer, L., Shultz, L. D. (1996): Role of nitric oxide in host defense against extracellular metazoan parasite Brugia malayi. Infect. Immun., 64: 3351–3353 Search in Google Scholar

[53] Reiterová, K., Dubinský, P., Klimenko, V.V., Tomašovičová, O., Dvorožňáková, E. (1999): Comparison of Trichinella spiralis larva antigens for the detection of specific antibodies in pigs. Veterinarni Med., 44 1): 1–5 Search in Google Scholar

[54] Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. Ch., Shi, Y. (2008): Mesenchymal stem cellmediated immunosupression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2: 141–150. DOI: 10.1016/j.stem.2007.11.014 http://dx.doi.org/10.1016/j.stem.2007.11.01410.1016/j.stem.2007.11.014Search in Google Scholar

[55] Rockett, K. A., Awburn, M. M., Rockett, E. J., Cowden, W. B., Clark, I. A. (1994): Possible role of nitric oxide in malarial immunosuppression. Parasite Immunol., 16: 243–249. DOI: 10.1111/j.1365-3024.1994.tb00346.x http://dx.doi.org/10.1111/j.1365-3024.1994.tb00346.x10.1111/j.1365-3024.1994.tb00346.xSearch in Google Scholar

[56] Shanta, C. S., Meerovich, E. (1967): The life cycle of Trichinella spiralis. II. The muscle phase of development and its possible evolution. Can. J. Zool., 45: 1261–1267 Search in Google Scholar

[57] Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M., Agarwal, S. S. (2000): Modulation of autoimmune diseases by nitric oxide. Immunol. Res., 22: 1–19. DOI: 10.1385/IR:22:1:1 http://dx.doi.org/10.1385/IR:22:1:110.1385/IR:22:1:1Search in Google Scholar

[58] Urban, J. F., Schopf, L., Morris, S. C., Orekhova, T., Madden, K. B., Betts, C. J., Gamble, H. R., Byrd, C., Donaldson, D., Else, K., Finkelman, F. D. (2000): Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. J. Immunol., 164: 2046–2052 Search in Google Scholar

[59] Wandurska-nowak, E., Wiśniewska, J. (2002): Release of nitric oxide during experimental trichinellosis in mice. Parasitol. Res., 88: 708–711. DOI: 10.1007/s00436-002-0631-6 http://dx.doi.org/10.1007/s00436-002-0631-610.1007/s00436-002-0631-612107466Search in Google Scholar

[60] Zeballos, G. A., Bernstein, R. D., Thompson, C. I., Forfia, P. R., Seyedi, N., Shen, W., Kaminski, P. M., Wolin, M. S., Hintze, t. H. (1995): Pharmacodynamics of plasma nitrate/nitrite as an indicator of nitric oxide formation in conscious dogs. Circulation, 91: 2982–2988 http://dx.doi.org/10.1161/01.CIR.91.12.298210.1161/01.CIR.91.12.29827796509Search in Google Scholar

[61] Zhu, L., Gunn, C., Beckman, J. S. (1992): Bactericidal activity of peroxynitrite. Arch. Biochem. Biophys., 298: 452–457. DOI: 10.1016/0003-9861(92)90434-X http://dx.doi.org/10.1016/0003-9861(92)90434-X10.1016/0003-9861(92)90434-XSearch in Google Scholar

eISSN:
1336-9083
ISSN:
0440-6605
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Zoology, Ecology, other, Medicine, Clinical Medicine, Microbiology, Virology and Infection Epidemiology