1. bookVolumen 26 (2022): Edición 1 (January 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2255-8837
Primera edición
26 Mar 2010
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

Environmental and Economic Advantages of Disposal of Phosphoric Industry Waste

Publicado en línea: 22 Mar 2022
Volumen & Edición: Volumen 26 (2022) - Edición 1 (January 2022)
Páginas: 143 - 154
Detalles de la revista
License
Formato
Revista
eISSN
2255-8837
Primera edición
26 Mar 2010
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

The article presents the types and classification of waste from the phosphorus industry of the Zhambyl region of the Republic of Kazakhstan. Waste is classified by its use as recyclable materials for construction materials. The results of a comparative assessment of the physical, chemical and structural properties of the phosphorus industry waste are presented. The article shows that all studied types of waste have astringent properties and can be used as building materials. In this work, a study of the properties of large-tonnage wastes of the phosphorus industry was carried out: 1) electrothermophosphoric granular slag (granulated slag); 2) phosphogypsum; 3) overburden. A technology has been developed for producing non-fired binders from waste of the phosphorus industry and a methodology for designing the composition of raw mixtures of multicomponent building composites has been proposed.

Pilot tests and calculation of technical and economic indicators have been carried out, which have shown the economic feasibility of producing a non-firing binder for the construction industry from phosphorus production waste.

Keywords

[1] Mirsaev R. N., Akhmadulina I. I., Babkov V. V., Nedoseko I. V., Gaitova A. R., Kuzmin V. V. Gipsoshlakovyye kompozitsii izotkhodov promyshlennosti v stroitel’nykh tekhnologiyakh. (Gypsum slag compositions of industrial wastes in building technologies). Construction Materials 2010:7:4–6. (In Russian). Search in Google Scholar

[2] Bishimbaev V. K., Zhekeev M. K., Dmitrievsky B. A., Zhekeev R. M. Ekologicheskiye aspekty elektrotermicheskoy pererabotki fosfatov. (Environmental aspects of electrothermal processing of phosphates). Chemical technology 2011:5:307–313. (In Russian). Search in Google Scholar

[3] Dvorkin L. I., Dvorkin O. L., Mironenko A. V., Kundos M. G. Sul’fatno-shlakovyye vyazhushchiye povyshennoy prochnosti i dolgovechnosti. (Sulfate-slag binders with increased strength and durability). Dry construction mixtures 2011:3:36–38. (In Russian). Search in Google Scholar

[4] Karpovich E. A., Vakal S. V., Zolotarev A. E. Otrabotka promyshlennogo varianta tekhnologii pererabotki fosfogipsa na gipsovoye vyazhushcheye. (Development of an industrial version of the technology for processing phosphogypsum into a gypsum binder). Mater. XVI international scientific Conference ‘Ecology and human health. Protection of air and water basins. Recycling’. Kharkiv: UKSTC Elektrostal 2008:2:234–238. (In Russian). Search in Google Scholar

[5] Huang Y., Lin Z. A binder of phosphogypsum-ground granulated blast furnace slag-ordinary portland cement. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011:3(26):548–551. https://doi.org/10.1007/s11595-011-0265-610.1007/s11595-011-0265-6 Search in Google Scholar

[6] Martinez-Aguilar O. A., Castro-Borges P., Escalante-Garcia J. I. Hydraulic binders of Fluorgypsum Portland cement and blast furnace slag, stability and mechanical properties. Construction and Building Materials 2010:24(5):631–639. https://doi.org/10.1016/j.conbuildmat.2009.11.00610.1016/j.conbuildmat.2009.11.006 Search in Google Scholar

[7] Huang Y., Lin Z. Investigation on phosphogypsum steel slag granulated blast-furnace slag ѕlimestone cement. Construction and Building Materials 2010:24(7):1296–1301. https://doi.org/10.1016/j.conbuildmat.2009.12.00610.1016/j.conbuildmat.2009.12.006 Search in Google Scholar

[8] Chernysheva N. V., Sverguzova S. V., Tarasova G. I. Polucheniye gipsovogo vyazhushchego iz fosfogipsa Tunisa. (Obtaining a gypsum binder from phosphogypsum of Tunisia). Building materials 2010:7:28–30. (In Russian). Search in Google Scholar

[9] Tleuov A. S., Kulakhmet A. M., Tleuova S. T., Altybaev J. M., Arystanova S. D., Sagindikova N. T., Shapalov Sh. K., Isaeva D. A. Issledovaniye protsessa kompleksnoy kislotno-termicheskoy pererabotki otkhodov fosfornogo proizvodstva. (Study of the process of complex acid-thermal processing of phosphorus production wastes). Bulletin of the National Academy of Sciences of the Republic of Kazakhstan. Series of chemistry and technology 2017:421:101–108. (In Russian). Search in Google Scholar

[10] Turgumbayeva Kh. Kh., Beisekova T. I., Lapshina I. Z., Shanbayev M. Zh., Kerimbayeva I. N. Research report: Utilizatsiya otkhodov fosfornoy promyshlennosti s polucheniyem mnogotselevyye produktov dlya stroitel’noy industrii. (Disposal of waste from the phosphorus industry to obtain multipurpose products for the construction industry). 2015–2017. (In Russian). Search in Google Scholar

[11] State standard 20851.2-75 Mineral fertilizers. Methods for the determination of phosphates. Search in Google Scholar

[12] State standard 20851.3-93 Mineral fertilizers. Methods for determination of pottassium content. Search in Google Scholar

[13] State standard 20851.4-75 Mineral fertilizers. Methods for determination of water. Search in Google Scholar

[14] Sbornik analiticheskikh metodov. (Collection of analytical methods). NISAM. M.: VIMS 1983. (In Russian). Search in Google Scholar

[15] Kurbatov I. M. Sovremennyye metody khimicheskogo analiza stroitel’nykh materialov. (Modern methods of chemical analysis of building materials). Stroyizdat 1972. (In Russian). Search in Google Scholar

[16] Turgumbaeva Kh. Kh., Lapshina I. Z., Beisekova T. I., Abdualiyeva Zh. U., Shanbaev M. Zh. Utilizatsiya tekhnogennykh otkhodov fosfornoy promyshlennosti. (Utilization of industrial waste produced by the phosphoric industry). Int. J. Chem. Sci 2016:14(4):2891–2910. (In Russian). Search in Google Scholar

[17] Dvorkin L. I. Stroitel’nyye materialy iz otkhodov promyshlennosti. Construction materials from industrial waste. Rostov: Phoenix 2007. (In Russian). Search in Google Scholar

[18] Dvorkin L. I., Dvorkin O. L. Stroitel’noye materialovedeniye. (Building materials science). M.: Infra-Engineering 2013. (In Russian). Search in Google Scholar

[19] Kaptyushina A. G., Bondarenko G. V. Proyektirovaniye sostava kompozitsionnogo bezobzhigovogo vyazhushchego na baze tekhnogennykh otkhodov Cherepovetskogo promyshlennogo uzla i issledovaniye yego tekhnicheskikh kharakteristik. (Designing the composition of a composite non-fired binder based on industrial waste from the Cherepovets industrial hub and a study of its technical characteristics). Chemical Industry Today 2011:11:37–41. (In Russian). Search in Google Scholar

[20] State standard 23789-79 Gypsum binders. Test methods. Search in Google Scholar

[21] State standard 125-79 Gypsum binders. Specifications. Search in Google Scholar

[22] Dvorkin L. I., Dvorkin O. L. Stroitel’nyye mineral’nyye vyazhushchiye materialy. Construction mineral binders. M: Infra-Engineering 2011. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo