Role of Th1/Th2 imbalance mediated by T cell glycolytic rate-limiting enzymes hexokinase 2, phosphofructokinase-1, and pyruvate kinase M2 in oral lichen planus
This work is licensed under the Creative Commons Attribution 4.0 International License.
Louisy A, Humbert E, Samimi M. Oral Lichen Planus: An Update on Diagnosis and Management. Am J Clin Dermatol. 2024;25(1):35-53. DOI: 10.1007/s40257-023-00814-3Search in Google Scholar
Le Gatt P, Nguyen AT, Baaroun V, Rochefort J. Oral Lichen Planus in Patients With Good’s Syndrome: A Literature Review. Cureus. 2023;15(2):e35177. DOI: 10.7759/cureus.35177Search in Google Scholar
Mathew S, Lobo C, Antony M. Oral lichen planus. Cleve Clin J Med. 2023;90(12):717-8. DOI: 10.3949/ccjm.90a.23048Search in Google Scholar
DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int J Mol Sci. 2023;24(2):1490. DOI: 10.3390/ijms24021490Search in Google Scholar
Dafar A, Siarov A, Mostaghimi Y, Robledo-Sierra J, De Lara S, Giglio D, et al. Langerhans Cells, T Cells, and B Cells in Oral Lichen Planus and Oral Leukoplakia. Int J Dent. 2022;22(1):5430309. DOI: 10.1155/2022/5430309Search in Google Scholar
DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2(2):127-9. DOI: 10.1038/s42255-020-0172-2Search in Google Scholar
Hashimoto H, McCallion O, Kempkes RW, Hester J, Issa F. Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunol Lett. 2020;223:53-61. DOI: 10.1016/j. imlet.2020.04.011Search in Google Scholar
Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst. 2023;27(1):149-58. DOI: 10.1080/19768354.2023.2234986Search in Google Scholar
Teng X, Cornaby C, Li W, Morel L. Metabolic regulation of pathogenic autoimmunity: therapeutic targeting. Curr Opin Immunol. 2019;61:10-6. DOI: 10.1016/j.coi.2019.07.001Search in Google Scholar
Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. DOI: 10.1038/s41467-019-13668-3Search in Google Scholar
Wang F, Zhang J, Zhou G. HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochim Biophys Acta Gen Subj. 2020;1864(7):129602. DOI: 10.1016/j. bbagen.2020.129602Search in Google Scholar
Yang Y, Hu P, Chen SR, Wu WW, Chen P, Wang SW, et al. Predicting the Activity of Oral Lichen Planus with Glycolysis-related Molecules: A Scikit- learn-based Function. Curr Med Sci. 2023;43(3):602-8. DOI: 10.1007/s11596-023-2716-7Search in Google Scholar
Wang QM, Huang XY, Guan WQ. Expressions of Interleukin-27 in oral lichen planus, oral leukoplakia, and oral squamous cell carcinoma. Inflammation. 2022;45(3):1023-38. DOI: 10.1007/s10753-021-01599-5Search in Google Scholar
El-Howati A, Thornhill MH, Colley HE, Murdoch C. Immune mechanisms in oral lichen planus. Oral Dis. 2023;29(4):1400-15. DOI: 10.1111/odi.14142Search in Google Scholar
Mozaffari HR, Molavi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, et al. Salivary and Serum Interferon- Gamma/Interleukin-4 Ratio in Oral Lichen Planus Patients: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2019;55(6):257. DOI: 10.3390/medicina55060257Search in Google Scholar
Wei W, Wang Y, Sun Q, Jiang C, Zhu M, Song C, et al. Enhanced T-cell proliferation and IL-6 secretion mediated by overexpression of TRIM21 in oral lesions of patients with oral lichen planus. J Oral Pathol Med. 2020;49(4):350-356. DOI: 10.1111/jop.12938Search in Google Scholar
Zhao Z, Wang L, Zhang M, Zhou C, Wang Y, Ma J, et al. Reveals of quercetin’s therapeutic effects on oral lichen planus based on network pharmacology approach and experimental validation. Sci Rep. 2022;12(1):1162. DOI: 10.1038/s41598-022-04769-zSearch in Google Scholar
Jiang L, Huang Y, Fang M, Chen X, Feng D, Liu J, et al. Dynamic changes of Th1/Th2/Th17 cytokines and hBD-2/3 in erosive oral lichen planus patients saliva before and after prednisone acetate treatment. Heliyon, 2024;10(1):e24043. DOI: 10.1016/j. heliyon.2024.e24043Search in Google Scholar
Zhang Z, Zhang Y, Zhao Z, Li P, Chen D, Wang W, et al. Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep. 2022;12(1):18678. DOI: 10.1038/s41598-022-23158-0Search in Google Scholar
Liu W, Li M, Zhang X, Zhou Z, Shen Z, Shen X. Association of polymorphisms in Th1/Th2-related cytokines (IFN-γ, TGFβ1, IL-1β, IL-2, IL-4, IL-18) with oral lichen planus: A pooled analysis of case-control studies. J Dent Sci. 2023;18(2):560-6. DOI: 10.1016/j. jds.2022.08.032Search in Google Scholar
Mehrbani SP, Motahari P, Azar FP, et al. Role of interleukin-4 in pathogenesis of oral lichen planus: A systematic review. Med Oral Patol Oral Cir Bucal. 2020;25(3):e410-e5. DOI: 10.4317/medoral.23460Search in Google Scholar
Wang F, Zhang J, Zhou G. The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus. Immunobiology. 2020;,225(3):151933. DOI: 10.1016/j.imbio.2020.151933Search in Google Scholar
Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 2022;19(4):504-15. DOI: 10.1038/s41423-021-00806-5Search in Google Scholar
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 2022;41(1):329. DOI: 10.1186/s13046-022-02531-xSearch in Google Scholar
Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 2023;254(1):109698. DOI: 10.1016/j.clim.2023.109698Search in Google Scholar
Zheng X, Shao J, Qian J, Liu S. circRPS19 affects HK2mediated aerobic glycolysis and cell viability via the miR125a5p/USP7 pathway in gastric cancer. Int J Oncol. 2023;63(2):98. DOI: 10.3892/ijo.2023.5546Search in Google Scholar
Fang J, Luo S, Lu Z. HK2: Gatekeeping microglial activity by tuning glucose metabolism and mitochondrial functions. Mol Cell. 2023;83(6):829-31. DOI: 10.1016/j.molcel.2023.02.022Search in Google Scholar
Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2023;16(1):16. DOI: 10.3390/cancers16010016Search in Google Scholar
Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep. 2023;56(11):618-23. DOI: 10.5483/BMBRep.2023-0065Search in Google Scholar
Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu HC, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021;41(7):560-75. DOI: 10.1002/cac2.12158Search in Google Scholar
Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41(1):46-56. DOI: 10.1038/s41388-021-02071-2Search in Google Scholar
Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 2021;12(5):697-709. DOI: 10.1111/jdi.13478Search in Google Scholar