Uneingeschränkter Zugang

Role of Th1/Th2 imbalance mediated by T cell glycolytic rate-limiting enzymes hexokinase 2, phosphofructokinase-1, and pyruvate kinase M2 in oral lichen planus

, , ,  und   
06. Nov. 2024

Zitieren
COVER HERUNTERLADEN

Louisy A, Humbert E, Samimi M. Oral Lichen Planus: An Update on Diagnosis and Management. Am J Clin Dermatol. 2024;25(1):35-53. DOI: 10.1007/s40257-023-00814-3 Search in Google Scholar

Le Gatt P, Nguyen AT, Baaroun V, Rochefort J. Oral Lichen Planus in Patients With Good’s Syndrome: A Literature Review. Cureus. 2023;15(2):e35177. DOI: 10.7759/cureus.35177 Search in Google Scholar

Mathew S, Lobo C, Antony M. Oral lichen planus. Cleve Clin J Med. 2023;90(12):717-8. DOI: 10.3949/ccjm.90a.23048 Search in Google Scholar

DeAngelis LM, Cirillo N, Perez-Gonzalez A, McCullough M. Characterization of Mucosal-Associated Invariant T Cells in Oral Lichen Planus. Int J Mol Sci. 2023;24(2):1490. DOI: 10.3390/ijms24021490 Search in Google Scholar

Dafar A, Siarov A, Mostaghimi Y, Robledo-Sierra J, De Lara S, Giglio D, et al. Langerhans Cells, T Cells, and B Cells in Oral Lichen Planus and Oral Leukoplakia. Int J Dent. 2022;22(1):5430309. DOI: 10.1155/2022/5430309 Search in Google Scholar

DeBerardinis RJ, Chandel NS. We need to talk about the Warburg effect. Nat Metab. 2020;2(2):127-9. DOI: 10.1038/s42255-020-0172-2 Search in Google Scholar

Hashimoto H, McCallion O, Kempkes RW, Hester J, Issa F. Distinct metabolic pathways mediate regulatory T cell differentiation and function. Immunol Lett. 2020;223:53-61. DOI: 10.1016/j. imlet.2020.04.011 Search in Google Scholar

Jeong H, Lee B, Han SJ, Sohn DH. Glucose metabolic reprogramming in autoimmune diseases. Anim Cells Syst. 2023;27(1):149-58. DOI: 10.1080/19768354.2023.2234986 Search in Google Scholar

Teng X, Cornaby C, Li W, Morel L. Metabolic regulation of pathogenic autoimmunity: therapeutic targeting. Curr Opin Immunol. 2019;61:10-6. DOI: 10.1016/j.coi.2019.07.001 Search in Google Scholar

Martínez-Reyes I, Chandel NS. Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 2020;11(1):102. DOI: 10.1038/s41467-019-13668-3 Search in Google Scholar

Wang F, Zhang J, Zhou G. HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochim Biophys Acta Gen Subj. 2020;1864(7):129602. DOI: 10.1016/j. bbagen.2020.129602 Search in Google Scholar

Yang Y, Hu P, Chen SR, Wu WW, Chen P, Wang SW, et al. Predicting the Activity of Oral Lichen Planus with Glycolysis-related Molecules: A Scikit- learn-based Function. Curr Med Sci. 2023;43(3):602-8. DOI: 10.1007/s11596-023-2716-7 Search in Google Scholar

Wang QM, Huang XY, Guan WQ. Expressions of Interleukin-27 in oral lichen planus, oral leukoplakia, and oral squamous cell carcinoma. Inflammation. 2022;45(3):1023-38. DOI: 10.1007/s10753-021-01599-5 Search in Google Scholar

El-Howati A, Thornhill MH, Colley HE, Murdoch C. Immune mechanisms in oral lichen planus. Oral Dis. 2023;29(4):1400-15. DOI: 10.1111/odi.14142 Search in Google Scholar

Mozaffari HR, Molavi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, et al. Salivary and Serum Interferon- Gamma/Interleukin-4 Ratio in Oral Lichen Planus Patients: A Systematic Review and Meta-Analysis. Medicina (Kaunas). 2019;55(6):257. DOI: 10.3390/medicina55060257 Search in Google Scholar

Wei W, Wang Y, Sun Q, Jiang C, Zhu M, Song C, et al. Enhanced T-cell proliferation and IL-6 secretion mediated by overexpression of TRIM21 in oral lesions of patients with oral lichen planus. J Oral Pathol Med. 2020;49(4):350-356. DOI: 10.1111/jop.12938 Search in Google Scholar

Zhao Z, Wang L, Zhang M, Zhou C, Wang Y, Ma J, et al. Reveals of quercetin’s therapeutic effects on oral lichen planus based on network pharmacology approach and experimental validation. Sci Rep. 2022;12(1):1162. DOI: 10.1038/s41598-022-04769-z Search in Google Scholar

Jiang L, Huang Y, Fang M, Chen X, Feng D, Liu J, et al. Dynamic changes of Th1/Th2/Th17 cytokines and hBD-2/3 in erosive oral lichen planus patients saliva before and after prednisone acetate treatment. Heliyon, 2024;10(1):e24043. DOI: 10.1016/j. heliyon.2024.e24043 Search in Google Scholar

Zhang Z, Zhang Y, Zhao Z, Li P, Chen D, Wang W, et al. Paeoniflorin drives the immunomodulatory effects of mesenchymal stem cells by regulating Th1/Th2 cytokines in oral lichen planus. Sci Rep. 2022;12(1):18678. DOI: 10.1038/s41598-022-23158-0 Search in Google Scholar

Liu W, Li M, Zhang X, Zhou Z, Shen Z, Shen X. Association of polymorphisms in Th1/Th2-related cytokines (IFN-γ, TGFβ1, IL-1β, IL-2, IL-4, IL-18) with oral lichen planus: A pooled analysis of case-control studies. J Dent Sci. 2023;18(2):560-6. DOI: 10.1016/j. jds.2022.08.032 Search in Google Scholar

Mehrbani SP, Motahari P, Azar FP, et al. Role of interleukin-4 in pathogenesis of oral lichen planus: A systematic review. Med Oral Patol Oral Cir Bucal. 2020;25(3):e410-e5. DOI: 10.4317/medoral.23460 Search in Google Scholar

Wang F, Zhang J, Zhou G. The mTOR-glycolytic pathway promotes T-cell immunobiology in oral lichen planus. Immunobiology. 2020;,225(3):151933. DOI: 10.1016/j.imbio.2020.151933 Search in Google Scholar

Yuan Y, Fan G, Liu Y, Liu L, Zhang T, Liu P, et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol Immunol. 2022;19(4):504-15. DOI: 10.1038/s41423-021-00806-5 Search in Google Scholar

Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, et al. Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 2022;41(1):329. DOI: 10.1186/s13046-022-02531-x Search in Google Scholar

Liu T, Wen Z, Shao L, Cui Y, Tang X, Miao H, et al. ATF4 knockdown in macrophage impairs glycolysis and mediates immune tolerance by targeting HK2 and HIF-1α ubiquitination in sepsis. Clin Immunol. 2023;254(1):109698. DOI: 10.1016/j.clim.2023.109698 Search in Google Scholar

Zheng X, Shao J, Qian J, Liu S. circRPS19 affects HK2mediated aerobic glycolysis and cell viability via the miR125a5p/USP7 pathway in gastric cancer. Int J Oncol. 2023;63(2):98. DOI: 10.3892/ijo.2023.5546 Search in Google Scholar

Fang J, Luo S, Lu Z. HK2: Gatekeeping microglial activity by tuning glucose metabolism and mitochondrial functions. Mol Cell. 2023;83(6):829-31. DOI: 10.1016/j.molcel.2023.02.022 Search in Google Scholar

Campos M, Albrecht LV. Hitting the Sweet Spot: How Glucose Metabolism Is Orchestrated in Space and Time by Phosphofructokinase-1. Cancers. 2023;16(1):16. DOI: 10.3390/cancers16010016 Search in Google Scholar

Park J, Lee DH. Protein phosphatase 4 dephosphorylates phosphofructokinase-1 to regulate its enzymatic activity. BMB Rep. 2023;56(11):618-23. DOI: 10.5483/BMBRep.2023-0065 Search in Google Scholar

Wang JZ, Zhu W, Han J, Yang X, Zhou R, Lu HC, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 2021;41(7):560-75. DOI: 10.1002/cac2.12158 Search in Google Scholar

Yu S, Zang W, Qiu Y, Liao L, Zheng X. Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene. 2022;41(1):46-56. DOI: 10.1038/s41388-021-02071-2 Search in Google Scholar

Liu H, Takagaki Y, Kumagai A, Kanasaki K, Koya D. The PKM2 activator TEPP-46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIF-1α accumulation. J Diabetes Investig. 2021;12(5):697-709. DOI: 10.1111/jdi.13478 Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Humanbiologie, Mikrobiologie und Virologie