1. bookVolumen 30 (2022): Edición 3 (July 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Expressions of TGF-β1 and VEGF in patients with acute myeloid leukemia and associations with prognosis

Publicado en línea: 18 Jul 2022
Volumen & Edición: Volumen 30 (2022) - Edición 3 (July 2022)
Páginas: 273 - 280
Recibido: 26 Nov 2021
Aceptado: 06 Jun 2022
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Background: To study the expressions of transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) in patients with acute myeloid leukemia (AML) and their values for prognosis.

Methods: A total of 120 AML patients treated from January 2015 to December 2018 were selected. Bone marrow mononuclear cells were isolated. The expressions of TGF-β1 and VEGF were detected by RT-PCR, and their associations with clinical characteristics were analyzed. The overall survival (OS) and disease-free survival (DFS) were assessed using the Kaplan-Meier method. The risk factors for prognosis were analyzed through the Cox proportional hazards model.

Results: The AML group had significantly lower relative expression of TGF-β1 and higher relative expression of VEGF than those of the control group (P<0.05). TGF-β1 and VEGF levels were significantly correlated with white blood cell count, hemoglobin, platelets, and peripheral blood juvenile cells (P<0.05). TGF-β1 level was higher and VEGF level was lower in the patients with complete response than those in the patients with partial response and no response (P<0.05). Both OS and DFS of the patients with high TGF-β1 expression were better than those of the patients with low TGF-β1 expression, while they were also superior among the patients with low VEGF expression (P<0.05). Platelets, TGF-β1 and VEGF were independent influencing factors for OS, and white blood cells, TGF-β1 and VEGF were independent influencing factors for DFS (P<0.05).

Conclusions: AML patients have decreased expression of TGF-β1 and increased expression of VEGF, and such changes are closely associated with the prognosis of AML.

Keywords

1. Gołos A, Jesionek-Kupnicka D, Gil L, Braun M, Komarnicki M, Robak T, et al. The Expression of the SLIT-ROBO Family in Adult Patients with Acute Myeloid Leukemia. Arch Immunol Ther Exp (Warsz). 2019;67(2):109-23. DOI: 10.1007/s00005-019-00535-8642049230820596 Abierto DOISearch in Google Scholar

2. Ueda N, Fujita K, Okuno Y, Nakatani K, Mio T. Therapy-related acute myeloid leukemia after chemotherapy in extensive disease-small cell lung cancer. Clin Case Rep. 2018;7(1):100-3. DOI: 10.1002/ccr3.1931633274130656018 Abierto DOISearch in Google Scholar

3. He X, Li W, Liang X, Zhu X, Zhang L, Huang Y, et al. IGF2BP2 Overexpression Indicates Poor Survival in Patients with Acute Myelocytic Leukemia. Cell Physiol Biochem. 2018;51(4):1945-56. DOI: 10.1159/00049571930513526 Abierto DOISearch in Google Scholar

4. Prochazka KT, Pregartner G, Rücker FG, Heitzer E, Pabst G, Wölfler A, et al. Clinical implications of subclonal TP53 mutations in acute myeloid leukemia. Haematologica. 2019;104(3):516-23. DOI: 10.3324/haematol.2018.205013639534130309854 Abierto DOISearch in Google Scholar

5. Stomper J, Ihorst G, Suciu S, Sander PN, Becker H, Wijermans PW, et al. Fetal hemoglobin induction during decitabine treatment of elderly patients with high-risk myelodysplastic syndrome or acute myeloid leukemia: a potential dynamic biomarker of outcome. Haematologica. 2019;104(1):59-69. DOI: 10.3324/haematol.2017.187278631201430171030 Abierto DOISearch in Google Scholar

6. Wang F, Tian X, Zhou J, Wang G, Yu W, Li Z, et al. A three lncRNA signature for prognosis prediction of acute myeloid leukemia in patients. Mol Med Rep. 2018;18(2):1473-84. DOI: 10.3892/mmr.2018.9139607222029901168 Abierto DOISearch in Google Scholar

7. Leukemia & Lymphoma Group, Chinese Society of Hematology, Chinese Medical Association. Chinese guidelines for diagnosis and treatment of adult acute myeloid leukemia (not APL) (2017 Edition). Zhonghua Xue Ye Xue Za Zhi. 2017;38(3):177-82. Search in Google Scholar

8. Min JW, Koh Y, Kim DY, Kim HL, Han JA, Jung YJ, et al. Identification of novel functional variants of sin3a and srsf1 among somatic variants in acute myeloid leukemia patients. Mol Cells. 2018;41(5):465-75. Search in Google Scholar

9. Ma L, Kuai WX, Sun XZ, Lu XC, Yuan YF. Long noncoding RNA LINC00265 predicts the prognosis of acute myeloid leukemia patients and functions as a promoter by activating PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 2018;22(22):7867-76. Search in Google Scholar

10. Bani-Ahmad MA, Al-Sweedan SA, Al-Asseiri MA, Alkhatib AJ. A Proposed kinetic model for the diagnostic and prognostic value of wt1 and p53 in acute myeloid leukemia. Clin Lab. 2018;64(3):357-63. DOI: 10.7754/Clin.Lab.2017.17091529739109 Abierto DOISearch in Google Scholar

11. Ollila TA, Olszewski AJ, Butera JN, Quesenberry MI, Quesenberry PJ, Reagan JL. Marrow hypocellularity, but not residual blast count or receipt of reinduction chemotherapy, is prognostic on day-14 assessment in acute myeloid leukemia patients with morphologic residual disease. Clin Lymphoma Myeloma Leuk. 2018;18(3):204-9. DOI: 10.1016/j.clml.2018.01.00729433979 Abierto DOISearch in Google Scholar

12. Lacombe F, Campos L, Allou K, Arnoulet C, Delabarthe A, Dumezy F, et al. Prognostic value of multicenter flow cytometry harmonized assessment of minimal residual disease in acute myeloblastic leukemia. Hematol Oncol. 2018;36(2):422-8. DOI: 10.1002/hon.248829218734 Abierto DOISearch in Google Scholar

13. Khalil MMI, Lipton JH, Atenafu EG, Gupta V, Kim DD, Kuruvilla J, et al. Impact of comorbidities constituting the hematopoietic cell transplant (HCT)-comorbidity index on the outcome of patients undergoing allogeneic HCT for acute myeloid leukemia. Eur J Haematol. 2018;100(2):198-205. DOI: 10.1111/ejh.1300029168234 Abierto DOISearch in Google Scholar

14. Zhou JD, Yao DM, Li XX, Zhang TJ, Zhang W, Ma JC, et al. KRAS overexpression independent of RAS mutations confers an adverse prognosis in cytogenetically normal acute myeloid leukemia. Oncotarget. 2017;8(39):66087-97. DOI: 10.18632/oncotarget.19798563039429029494 Abierto DOISearch in Google Scholar

15. Elhamamsy AR, El Sharkawy MS, Zanaty AF, Mahrous MA, Mohamed AE, Abushaaban EA. Circulating miR-92a, miR-143 and miR-342 in Plasma are Novel Potential Biomarkers for Acute Myeloid Leukemia. Int J Mol Cell Med. 2017;6(2):77-86. Search in Google Scholar

16. Vidal V, Robert G, Goursaud L, Durand L, Ginet C, Karsenti JM, et al. BCL2L10 positive cells in bone marrow are an independent prognostic factor of azacitidine outcome in myelodysplastic syndrome and acute myeloid leukemia. Oncotarget. 2017;8(29):47103-9. DOI: 10.18632/oncotarget.17482556454728514758 Abierto DOISearch in Google Scholar

17. Isidori A, Loscocco F, Curti A, Amadori S, Visani G. Genomic profiling and predicting treatment response in acute myeloid leukemia. Pharmacogenomics. 20: 467-470, 2019. DOI: 10.2217/pgs-2018-020231124415 Abierto DOISearch in Google Scholar

18. McMahon CM, Canaani J, Rea B, et al. Gilteritinib induces differentiation in relapsed and refractory FLT3-mutated acute myeloid leukemia. Blood Adv 2019;20(7):467-70. DOI: 10.1182/bloodadvances.2018029496653887031122910 Abierto DOISearch in Google Scholar

19. Xiao PF, Tao YF, Hu SY, Cao L, Lu J, Wang J, et al. mRNA expression profiling of histone modifying enzymes in pediatric acute monoblastic leukemia. Pharmazie. 2017;72(3):177-86. Search in Google Scholar

20. Chae HD, Cox N, Dahl GV, Lacayo NJ, Davis KL, Capolicchio S, et al. Niclosamide suppresses acute myeloid leukemia cell proliferation through inhibition of CREB-dependent signaling pathways. Oncotarget. 2017;9(4):4301-17. DOI: 10.18632/oncotarget.23794579697529435104 Abierto DOISearch in Google Scholar

21. Safaei A, Monabati A, Mokhtari M, Safavi M, Solhjoo F. Evaluation of the CD123 Expression and FLT3 Gene Mutations in Patients with Acute Myeloid Leukemia. Iran J Pathol. 2018;13(4):438-46. Search in Google Scholar

22. Elkeeb D, Hopkins Z, Miles RR, Halwani A, Wada D. Ominous cutaneous presentation of acute myeloid leukemia without peripheral blood involvement upon initial presentation and relapse: case report and literature review. Eur J Dermatol. 2018;28(6):809-17. Search in Google Scholar

23. Alcalay M, Tiacci E, Bergomas R, Bigerna B, Venturini E, Minardi SP, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. Blood. 2005;106(3):899-902. DOI: 10.1182/blood-2005-02-056015831697 Abierto DOISearch in Google Scholar

24. Au WY, Fung A, Chim CS, Lie AK, Liang R, Ma ES, et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. Br J Haematol. 2004;125(4):463-9. DOI: 10.1111/j.1365-2141.2004.04935.x15142116 Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo