1. bookVolumen 29 (2021): Edición 2 (April 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Predictors associated with increased troponin in acute decompensated and chronic heart failure patients

Publicado en línea: 27 Apr 2021
Volumen & Edición: Volumen 29 (2021) - Edición 2 (April 2021)
Páginas: 153 - 164
Recibido: 13 Feb 2021
Aceptado: 07 Mar 2021
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Background: Myocardial injury (INJ) expressed by elevated high-sensitivity troponin (hs-Tn) is common in heart failure (HF), due to cardiovascular and non-cardiac conditions. The mechanisms of INJ in acute decompensated HF (ADHF) versus chronic HF (CHF) are still debated. This study’s purpose was to evaluate the determinants of elevated hs-TnT in ADHF and CHF.

Methods: We retrospectively analyzed consecutive HF patients with hs-TnT measured on admission, hospitalized in a tertiary-care hospital. Rehospitalizations, acute coronary syndromes, embolisms, infections, autoimmunity and malignancy were excluded. Cut-off point for hs-TnT was 14 ng/L.

Results: Our study included 488 HF patients, 56.55% with ADHF. Mean age was 72.52±10.09 years. 53.89% were females. 67.75% ADHF and 45.75% CHF patients had elevated hs-TnT. Median hs-TnT was higher in ADHF versus CHF (21.05[IQR 12.74-33.81] vs 13.20[IQR 7.93-23.25], p<0.0001). In multivariable analysis in ADHF and CHF, log10NT-proBNP (HR=5.30, 95%CI 2.71–10.38, p<0.001, respectively HR=5.49, 95%CI 1.71–17.57, p=0.004) and eGFR (HR=0.72, 95%CI 0.62–0.85, p<0.001, respectively HR=0.71, 95%CI 0.55–0.93, p=0.014) were independent predictors for increased hs-TnT. Independent factors associated with elevated hs-TnT in ADHF were male sex (HR=2.52, 95%CI 1.31-4.87, p=0.006) and chronic pulmonary obstructive disease (COPD) (HR=10.57, 95%CI 1.26-88.40, p=0.029), while in CHF were age (HR=2.68, 95%CI 1.42-5.07, p=0.002) and previous stroke (HR=5.35, 95%CI 0.98-29.20, p=0.053).

Conclusion: HF severity, expressed by NT-proBNP levels, and kidney disease progression, expressed by eGFR, were independent predictors associated with increased hs-TnT in both ADHF and CHF. Specific independent predictors were also indentified in ADHF (male sex, COPD) and CHF (age, history of stroke).

Keywords

1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of Amer. J Am Coll Cardiol. 2017;70(6):776-803. DOI: 10.1016/j.jacc.2017.04.02510.1016/j.jacc.2017.04.025Search in Google Scholar

2. Ponikowski P, Voors AA, Anker SD, Bueno H, Cle-land JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2016 Jul;37(27):2129-200. DOI: 10.1093/eurheartj/ehw12810.1093/eurheartj/ehw128Search in Google Scholar

3. Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor C, Felker GM, et al. Troponin Elevation in Heart Failure- Prevalence, Mechanisms, and Clinical Implications. J Am Coll Cardiol. 2010;56(14):1071-8. DOI: 10.1016/j.jacc.2010.06.01610.1016/j.jacc.2010.06.016Search in Google Scholar

4. La Vecchia L, Mezzena G, Ometto R, Finocchi G, Bedogni F, Soffiati G, et al. Detectable serum troponin I in patients with heart failure of nonmyocardial ischemic origin. Am J Cardiol. 1997;80(1):88-90. DOI: 10.1016/S0002-9149(97)00291-910.1016/S0002-9149(97)00291-9Search in Google Scholar

5. Missov E, De Marco T. Clinical insights on the use of highly sensitive cardiac troponin assays. Clin Chim Acta. 1999 Jun;284(2):175-85. DOI: 10.1016/S0009-8981(99)00079-010.1016/S0009-8981(99)00079-0Search in Google Scholar

6. Januzzi JL, Filippatos G, Nieminen M, Gheorghiade M. Troponin elevation in patients with heart failure: On behalf of the third Universal Definition of Myocardial Infarction Global Task Force: Heart Failure Section. Vol. 33, European Heart Journal. 2012. p. 2265-71. DOI: 10.1093/eurheartj/ehs19110.1093/eurheartj/ehs19122745356Search in Google Scholar

7. Diez M, Talavera ML, Conde DG, Campos R, Acosta A, Trivi MS, et al. High-sensitivity troponin is associated with high risk clinical profile and outcome in acute heart failure. Cardiol J. 2016;23(1):78-83. DOI: 10.5603/CJ.a2015.005810.5603/CJ.a2015.005826412605Search in Google Scholar

8. Shah KS, Maisel AS, Fonarow GC. Troponin in Heart Failure. Heart Fail Clin. 2018;14(1):57-64. DOI: 10.1016/j.hfc.2017.08.00710.1016/j.hfc.2017.08.00729153201Search in Google Scholar

9. Carlsson AC, Bandstein N, Roos A, Hammarsten O, Holzmann MJ. High-sensitivity cardiac troponin T levels in the emergency department in patients with chest pain but no myocardial infarction. Int J Cardiol. 2017;228:253-9. DOI: 10.1016/j.ijcard.2016.11.08710.1016/j.ijcard.2016.11.08727865194Search in Google Scholar

10. Gore MO, Seliger SL, Christopher R, Nambi V, Christenson RH, Hashim IA, et al. Age- and Sex-Dependent Upper Reference Limits for the High-Sensitivity Cardiac Troponin T Assay. 2014;63(14):1441-8. DOI: 10.1016/j.jacc.2013.12.03210.1016/j.jacc.2013.12.032398490024530665Search in Google Scholar

11. Bargnoux A, Kuster N, Moréna M, Baptista G, Chenine L, Badiou S, et al. L ‘ âge et la fonction rénale sont-ils des limites à l ‘ interprétation des biomarqueurs cardiaques ? Ann Biol Clin. 2016;74(4):413-9. DOI: 10.1684/abc.2016.116510.1684/abc.2016.116527492694Search in Google Scholar

12. Ndumele C, Cobb L, Lazo M, Bello N, Shah A, Nambi V, et al. Weight History and Subclinical Myocardial Damage. Clin Chem. 2019;64(1):201-9. DOI: 10.1373/clinchem.2017.28279810.1373/clinchem.2017.282798621937629158254Search in Google Scholar

13. Zheng J, Ye P, Luo L, Xiao W, Xu R, Wu H, et al. Association between blood glucose levels and high-sensitivity cardiac troponin T in an overt cardiovascular disease-free community-based study. Diabetes Res Clin Pract. 2012;97(1):139-45. DOI: 10.1016/j.diabres.2012.04.02110.1016/j.diabres.2012.04.02122579531Search in Google Scholar

14. Hijazi Z, Siegbahn A, Andersson U, Lindahl B, Granger CB, Alexander JH, et al. Comparison of Cardiac Troponins I and T Measured with High-Sensitivity Methods for Evaluation of Prognosis in Atrial Fibrillation : An ARISTOTLE Substudy. 2015;61:368-78. DOI: 10.1373/clinchem.2014.22693610.1373/clinchem.2014.22693625451868Search in Google Scholar

15. Chen M, Gerson H, Eintracht S, Nessim SJ, Macnamara E. Effect of Hemodialysis on Levels of High-Sensitivity Cardiac Troponin T. Am J Cardiol. 2017;120(11):2061-4. DOI: 10.1016/j.amjcard.2017.08.02610.1016/j.amjcard.2017.08.02629033047Search in Google Scholar

16. Kirkman DL, Muth BJ, Ramick MG, Townsend RR, Edwards DG. Role of mitochondria-derived reactive oxygen species in microvascular dysfunction in chronic kidney disease. Am J Physiol Ren Physiol. 2018;314:423-9. DOI: 10.1152/ajprenal.00321.201710.1152/ajprenal.00321.2017589922229117995Search in Google Scholar

17. Cai Q, Mukku VK, Ahmad M. Coronary Artery Disease in Patients with Chronic Kidney Disease : A Clinical Update. 2013;(Mi):331-9. DOI: 10.2174/1573403X10 666140214122234Search in Google Scholar

18. Santhanakrishnan R, Chong JPC, Ng TP, Ling LH, Sim D, Leong KTG, et al. Growth differentiation factor 15, ST2, high-sensitivity troponin T, and N-terminal pro brain natriuretic peptide in heart failure with preserved vs . reduced ejection fraction. Eur J Heart Fail. 2012;14:1338-47. DOI: 10.1093/eurjhf/hfs13010.1093/eurjhf/hfs13022869458Search in Google Scholar

19. Pandey A, Golwala H, Sheng S, DeVore AD, Hernandez AF, Bhatt DL, et al. Factors associated with and prognostic implications of cardiac troponin elevation in decompensated heart failure with preserved ejection fraction: Findings from the American Heart Association Get With the Guidelines-Heart Failure program. JAMA Cardiol. 2017;2(2):136-45. DOI: 10.1001/jamacardio.2016.472610.1001/jamacardio.2016.472628030747Search in Google Scholar

20. Löwbeer C, Gustafsson S, Seeberger A, Bouvier F, Hulting J. Serum cardiac troponin T in patients hospitalized with heart failure is associated with left ventricular hypertrophy and systolic dysfunction. Scand J Clin Lab Invest. 2004;64:667-76. DOI: 10.1080/0036551041000300210.1080/0036551041000300215513324Search in Google Scholar

21. Jarolim P. High sensitivity cardiac troponin assays in the clinical laboratories. 2015;53(5):635-52. DOI: 10.1515/cclm-2014-056510.1515/cclm-2014-056525252753Search in Google Scholar

22. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009 May;150(9):604-12. DOI: 10.7326/0003-4819-150-9-200905050-0000610.7326/0003-4819-150-9-200905050-00006276356419414839Search in Google Scholar

23. Pascual-Figal D, Casas T, Ordonez-Llanos J, Manzano-Fernández S, Bonaque J, Boronat M, et al. Highly sensitive troponin T for risk stratification of acutely destabilized heart failure. Am Heart J. 2012;163(6):1002-10. DOI: 10.1016/j.ahj.2012.03.01510.1016/j.ahj.2012.03.01522709753Search in Google Scholar

24. Felker GM, Hasselblad V, Tang WHW, Hernandez AF, Armstrong PW, Fonarow GC, et al. Troponin I in acute decompensated heart failure: insights from the ASCEND-HF study. Eur J Heart Fail. 2012 Nov;14(11):1257-64. DOI: 10.1093/eurjhf/hfs11010.1093/eurjhf/hfs11022764184Search in Google Scholar

25. Rustamova Y, Dobreanu D. Biomarkers in heart failure: From the bedside back to biology. Rev Rom Med Lab. 2018 Jul;26(3):267-70. DOI: 10.2478/rrlm-2018-003110.2478/rrlm-2018-0031Search in Google Scholar

26. Harrison N, Favot M, Levy P. The Role of Troponin for Acute Heart Failure. Curr Heart Fail Rep. 2019;16(1):21-31. DOI: 10.1007/s11897-019-0420-510.1007/s11897-019-0420-530762176Search in Google Scholar

27. Hickman PE, Potter JM, Aroney C, Koerbin G, South-cott E, Wu AHB, et al. Cardiac troponin may be released by ischemia alone, without necrosis. Vol. 411, Clinica Chimica Acta. Elsevier; 2010. p. 318-23. DOI: 10.1016/j.cca.2009.12.00910.1016/j.cca.2009.12.00920036224Search in Google Scholar

28. Park KC, Gaze DC, Collinson PO, Marber MS. Cardiac troponins: From myocardial infarction to chronic disease. Cardiovasc Res. 2017;113(14):1708-18. DOI: 10.1093/cvr/cvx18310.1093/cvr/cvx183585261829016754Search in Google Scholar

29. Lee K, Ferry A, Anand A, Strachan F, Chapman A, Kimenai D, et al. Sex-Specific Thresholds of High-Sensitivity Troponin in Patients With Suspected Acute Coronary Syndrome. J Am Coll Cardiol. 2019;74(16):2032-43. DOI: 10.1016/j.jacc.2019.07.08210.1016/j.jacc.2019.07.082687627131623760Search in Google Scholar

30. Fu S, Ping P, Zhu Q, Ye P, Luo L. Brain natriuretic peptide and its biochemical, analytical, and clinical issues in heart failure: A narrative review. Vol. 9, Frontiers in Physiology. Frontiers Media S.A.; 2018. p. 692. DOI: 10.3389/fphys.2018.0069210.3389/fphys.2018.00692599606629922182Search in Google Scholar

31. Bettencourt P. NT-proBNP and BNP: biomarkers for heart failure management. Eur J Heart Fail. 2004 Mar;6(3):359-63. DOI: 10.1016/j.ejheart.2004.01.00810.1016/j.ejheart.2004.01.00814987589Search in Google Scholar

32. Long B, Belcher CN, Koyfman A, Bronner JM. Interpreting Troponin in Renal Disease: A Narrative Review for Emergency Clinicians. Am J Emerg Med. 2020;38(5):990-7. DOI: 10.1016/j.ajem.2019.11.04110.1016/j.ajem.2019.11.04131831340Search in Google Scholar

33. Jeremias A, Gibson CM. Narrative review: Alternative causes for elevated cardiac troponin levels when acute coronary syndromes are excluded. Vol. 142, Annals of Internal Medicine. American College of Physicians; 2005. p. 786-91. DOI: 10.7326/0003-4819-142-9-200505030-0001510.7326/0003-4819-142-9-200505030-0001515867411Search in Google Scholar

34. Kanderian AS, Francis GS. Cardiac troponins and chronic kidney disease. Vol. 69, Kidney International. Kidney Int; 2006. p. 1112-4. DOI: 10.1038/sj. ki.5000174Search in Google Scholar

35. Kida K, Hattori K, Ishii T, Motegi T, Kusunoki Y, Gemma A, et al. Relationship between serum cardiac troponin T level and cardiopulmonary function in stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015 Feb;10(1):309-320. DOI: 10.2147/COPD.S7629310.2147/COPD.S76293433003125709425Search in Google Scholar

36. Campo G, Pavasini R, Malagù M, Mascetti S, Biscaglia S, Ceconi C, et al. Chronic Obstructive Pulmonary Disease and Ischemic Heart Disease Comorbidity: Overview of Mechanisms and Clinical Management. Cardiovasc Drugs Ther. 2015 Apr;29(2):147-57. DOI: 10.1007/s10557-014-6569-y10.1007/s10557-014-6569-y25645653Search in Google Scholar

37. Rydén L, Roos A, Holzmann MJ. Chronic Myocar-dial Injury and Risk for Stroke. Am J Med. 2019 Jul;132(7):833-9. DOI: 10.1016/j.amjmed.2019.01.02710.1016/j.amjmed.2019.01.02730716296Search in Google Scholar

38. Korosoglou G, Lehrke S, Mueller D, Hosch W, Kauczor HU, Humpert PM, et al. Determinants of troponin release in patients with stable coronary artery disease: Insights from CT angiography characteristics of athero-sclerotic plaque. Heart. 2011 May;97(10):823-31. DOI: 10.1136/hrt.2010.19320110.1136/hrt.2010.19320120884786Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo