Laboratory Test Methods for Assessing the Abrasivity of Rocks and Soils in Geotechnology and Mining Applications
, y
17 oct 2020
Acerca de este artículo
Categoría del artículo: Review paper
Publicado en línea: 17 oct 2020
Páginas: 103 - 118
Recibido: 17 ago 2020
Aceptado: 07 sept 2020
DOI: https://doi.org/10.2478/rmzmag-2020-0012
Palabras clave
© 2020 B. Janc et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1
![Wear of tools in geotechnology and mining engineering. The most typical devices for each field are shown (adapted from [3,4,5,6,7,8,9,10,11,12,13,14,15,16]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=09fb1a4432cdfc53d4dbe0ec64e5af830fd57cd9a220979f54bfce9ec1f24f97&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2

Figure 3
![CERCHAR-type testing apparatus (adapted from [17]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_003.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=85b740947e5168c0c53cbc4bd4793c04aeb0233a84b168a59e10f5fe31a9f6c8&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 4
![West-type testing apparatus (adapted from [17]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=f8be921a1d82da772aea3fa63523e30876872ef272aa9b13503658c724970d93&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5
![Steel pin. (a) Before the test. (b) After the test (d is the wear flat) (adapted from [18]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=b23b808c21fa913d90ff7cee1aee322b9df68cc4f5e27c5fc912a2bb871c7dcc&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6
![The two halves of the sample disc with test scratches (1–5) after Brazilian tensile test. (a) Rough surface. (b) Smooth surface (adapted from [20]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=06b21785d9d07b2d3489951fbcef1ba1fe9bf26faca0f69c9772f2b778356894&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7
![Measurements of pin wear. (a) Side view (d is the distance between the edges of the worn surface). (b) Top view (d1 and d2 are diameters of the worn pin, measured from two orthogonal directions) (adapted from [17]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=9f596070e79e393aeec3fcde974e39a428d9c9213c59978e24c0f470d273b53f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 8
![LCPC abrasivity testing device with main components (adapted from [18]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_008.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=8f446e2b7ef2cf062d2e56217b678ddc007ed74d81288e46863f259b9c6d3bd9&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 9
![Schematic representation of metal impeller before and after the LCPC test: 1 new impeller, 2 not abrasive, 3 abrasive/very abrasive, 4 very abrasive and 5 extremely abrasive (adapted from [21]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_009.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=796fbf98a05ed7f27f996dc3b0cf25f22e359bb97380bd700cc2af23c809e025&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 10
![Correlation between LAC and CAI [21].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_010.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=face3468eaeb22d0ff409a4e68fa697e0149ed99c203ae3a34b19d49b08ceff8&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 11
![NTNU/SINTEF abrasivity device (adapted from [22]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_011.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=b3e03b0fb480ef2ae0b5d27aab338a5c4873122787141ec1a29eb2607e4a23be&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 12
![Test specimen for rock abrasivity test AV and AVS (adapted from [23]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_012.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=cce70144524ee6bd49e81678448a9ba75395408f8ab34c63d96c5c6a7fdcb1d6&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 13
![Test specimen for soil abrasivity test SATTM (adapted from [23]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=960191b340312c7194c114fcce4ce281fb6cbab3a1bb3e6f331192871d00db7d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14
![RIAT device (adapted from [24]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_014.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=a866eebecdb335714d38bd30f6dc5f4f31bdbc4a248a5ab76102088c282c1df3&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 15
![Gouging abrasion test apparatus. (a) Front view. (b) Side view (adapted from [2]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_015.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=cabc59954386fbc526e01b14d323d099ff9b32ebe95cc53caa3eff4e3f6f9ad5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 16
![Wear contact between tool and rock sample (adapted from [2]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_016.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=819651992e2f36055c2af186c4cc6630b8e7e5c28d435e62980d30c7fbf6061a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 17
![Rock sample after testing (schematic). Numbers 1–6 represent individual scratches from the test (adapted from [2]).](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369c94e662f30ba53d222/j_rmzmag-2020-0012_fig_017.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T073432Z&X-Amz-Expires=3600&X-Amz-Signature=23a1a2d7cbc8e74015a3180f7d12ba1ed91db1cee9c0cbc0e4c1f98fa70ca5cd&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Main parameters of the CERCHAR abrasivity test_
Load (N) | 70 | |
Stylus hardness (HRC) | 55 ± 1 | |
Test scratch length (mm) | 10 | |
Sample material | Rock (freshly broken surface) | |
CERCHAR | WEST | |
Test duration (s) | 1 | 10 |
Test result | CERCHAR abrasivity index (CAI) |
Main parameters of the gouging abrasion test_
Impact energy (J) | 300 |
Wear tool hardness (HRC) | 40–42 |
Test scratch length (mm) | 78 |
Sample material | Rock (smooth surface) |
Test result | Gouging abrasion index (Gi) |
Main parameters of the LCPC abrasivity test_
Rotational speed (min−1) | 4,500 |
Sample material | Soil/granular material |
Grain size of the sample (mm) | 4–6.3 |
Sample mass (g) | 500 ± 2 |
Test duration (min) | 5 |
Test result | LCPC abrasivity coefficient (LAC) |
LCPC breakability coefficient (LBC) |
Classification of LCPC abrasivity coefficient (LAC) in relation to the CERCHAR abrasivity index (CAI) [21]_
0–50 | 0–0.3 | Not abrasive |
50–100 | 0.3–0.5 | Not very abrasive |
100–250 | 0.5–1.0 | Slightly abrasive |
250–500 | 1.0–2.0 | (Medium) abrasive |
500–1,250 | 2.0–4.0 | Very abrasive |
1,250–2,000 | 4.0–6.0 | Extremely abrasive |
Main parameters of the RIAT [24]_
Thrust (N) | 1,250 |
Rolling velocity (min−1) | 40 |
Test duration (min) | 30 |
Disc hardness (HRC) | 50 ± 1 |
Sample material | Rock (smooth surface) |
Test result | RIAT abrasivity index (RIATa) |
RIAT indentation index (RIATi) |
Classification of the CERCHAR abrasivity index (CAI) [17]_
0.1–0.4 | Extremely low |
0.5–0.9 | Very low |
1.0–1.9 | Low |
2.0–2.9 | Medium |
3.0–3.9 | High |
4.0–4.9 | Very high |
≥5 | Extremely high |
Classification of rock and soil abrasion on tungsten carbide (AV) and cutter steel (AVS, SATTM) test specimen [22]_
Extremely high | ≥58.0 | ≥44.0 | |
Very high | 42.0–57.9 | 36.0–44.0 | |
High | 28.0–41.9 | 26.0–35.9 | ≥22.0 |
Medium | 11.0–27.9 | 13.0–25.9 | 7.0–22.0 |
Low | 4.0–10.9 | 4.0–12.9 | ≤7.0 |
Very low | 1.1–3.9 | 1.1–3.9 | |
Extremely low | ≤1.0 | ≤1.0 |
Main parameters of the NTNU/SINTEF abrasivity tests_
Load (N) | 100 | ||
Rotational speed (min−1) | 20 | ||
Material mass flow (g/min) | 80 | ||
AV | AVS | SATTM | |
Test duration (min) | 5 | 1 | 1 |
Sample material | Crushed rock powder | Crushed rock powder | soil |
Grain size of the sample (mm) | <1 | <1 | <4 |
Test specimen material | Tungsten carbide | Cutter ring steel | Cutter ring steel |
Test result | AV value | AVS value | SATTM value |