Acceso abierto

Are Lactobacillus Bulgaricus and Bacillus Calmette-Guérin vaccine suitable for patient protection against SARS-CoV-2 infection?


Cite

1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-33. DOI: 10.1056/NEJMoa2001017.10.1056/NEJMoa2001017 Search in Google Scholar

2. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418-23. DOI: 10.1002/jmv.25681.10.1002/jmv.25681 Search in Google Scholar

3. Shen K, Yang Y, Wang T, Zhao D, Jiang Y, Jin R, et al. Diagnosis, treatment, and prevention of 2019 novel coronavirus infection in children: experts’ consensus statement. World J Pediatr. 2020;16(3)223-31. DOI: 10.1007/s12519-020-00343-7.10.1007/s12519-020-00343-7 Search in Google Scholar

4. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565-74. DOI: 10.1016/S0140-6736(20)30251-8.10.1016/S0140-6736(20)30251-8 Search in Google Scholar

5. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Inf Sci. 2020;63(3):457-60. DOI: 10.1007/s11427-020-1637-5.10.1007/s11427-020-1637-5708904932009228 Search in Google Scholar

6. To KF, Lo AWI. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-covertin enzyme 2 (ACE2). J Pathol. 2004;203(3):740-3. DOI: 10.1002/path.1597.10.1002/path.1597716790215221932 Search in Google Scholar

7. Han Q, Lin Q, Jin S, You L. Coronavirus 2019-nCoV: a brief perspective from the front line. J Infect. 2020;80(4):373-7. DOI: 10.1016/j.jinf.2020.02.010.10.1016/j.jinf.2020.02.010710258132109444 Search in Google Scholar

8. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol. 2020;94(7):e00127-20. DOI: 10.1128/JVI.00127-20.10.1128/JVI.00127-20708189531996437 Search in Google Scholar

9. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, et al. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J Virol. 2013;87(14):7790-2. DOI: 10.1128/JVI.01244-13.10.1128/JVI.01244-13370017923678167 Search in Google Scholar

10. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011-33. DOI: 10.3390/v4061011.10.3390/v4061011339735922816037 Search in Google Scholar

11. Zhang X, Li P, Zheng Q, Hou J. Lactobaccilus acidophilus S-layer protein-mediated inhibition of PEDV-induced apoptosis of Vero cells. Vet Microbiol. 2019;229:159-67. DOI: 10.1016/j.vetmic.2016.01.003.10.1016/j.vetmic.2016.01.00326931384 Search in Google Scholar

12. Bakkers MJG, Zeng Q, Feitsma LJ, Hulswit RJG, Li Z, Westerbeke A, et al. Coronavirus receptor switch explained from the stereochemistry of protein–carbohydrate interactions and a single mutation. Proc Natl Acad Sci U S A. 2016;113(22):E3111-9. DOI: 10.1073/pnas.151988113. Search in Google Scholar

13. Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, et al. SARS coronavirus entry into host cells through a novel clathrin - and caveolae - independent endocytic pathway. Cell Res. 2008;18(2):290-301. DOI: 10.1038/cr.2008.15.10.1038/cr.2008.15709189118227861 Search in Google Scholar

14. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, et al. SARS-CoV-2 specific T cell immunity in cases of CVID -19 and SARS, and uninfected controls. Nature. 2020;584(7821):457-62. DOI: 10.1038/s41586-020-2550-z.10.1038/s41586-020-2550-z32668444 Search in Google Scholar

15. Wei X, Li X, Cui J. Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China. Natl Sci Rev. 2020;7(2):239-42. DOI: 10.1093/nsr/nwaa009.10.1093/nsr/nwaa009710798332288962 Search in Google Scholar

16. Zhang G, Li B, Yoo D, Qin T, Zhang X, Jia Y, et al. Animal corona-viruses and SARS-CoV-2. Transbound Emerg Dis. 2021;68:1097-110. DOI: 10.1111/tbed.13791.10.1111/tbed.13791746106532799433 Search in Google Scholar

17. Franklin AB, Bevins SN. Spillover of SARS-CoV-2 into novel wild hosts in North America: A conceptual model for perpetuation of the pathogen. Sci Total Environ. 2020;733:139358. DOI: 10.1016/j.scitotenv.2020.139358.10.1016/j.scitotenv.2020.139358721429232416535 Search in Google Scholar

18. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA. 2020;323(16):1545-6. DOI:10.1001/jama.2020.4031.10.1001/jama.2020.403132167538 Search in Google Scholar

19. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811-8. DOI: 10.1001/jamacardio.2020.1017.10.1001/jamacardio.2020.1017710150632219356 Search in Google Scholar

20. Li P, Yin Y, Yu Q, Yang Q. Lactobacillus acidophilus S-layer protein-mediated inhibition of Salmonella-inducing apoptosis in Caco-2 cells. Biochem Biophys Res Commun. 2011;409(1):142-7. DOI: 10.1016/j.bbrc.2011.04.131.10.1016/j.bbrc.2011.04.13121557929 Search in Google Scholar

21. Li W, van Kuppeveld FJM, He Q, Rottier PJM, Bosch BJ. Cellular entry of the porcine epidemic diarrhea virus. Virus Res. 2016;226:117-27. DOI: 10.1016/j.virusres.2016.05.031.10.1016/j.virusres.2016.05.031711453427317167 Search in Google Scholar

22. Park JE, Jung S, Kim A, Park JE. MERS transmission and risk factors: a systematic review. BMC Public Health. 2018;18(1):574. DOI: 10.1186/s12889-018-5484-8.10.1186/s12889-018-5484-8593077829716568 Search in Google Scholar

23. Pedersen NC. Virologic and immunologic aspects of feline infectious peritonitis virus infection. Adv Exp Med Biol. 1987;218:529-50. DOI: 10.1007/978-1-4684-1280-2_69.10.1007/978-1-4684-1280-2_692829567 Search in Google Scholar

24. Regan AD, Whittaker GR. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. J Virol. 2008;82(23):11992-6. DOI: 10.1128/JVI.01094-08.10.1128/JVI.01094-08258369118799586 Search in Google Scholar

25. Regan AD, Ousterout DG, Whittaker GR. Feline lectin activity is critical for the cellular entry of feline infectious peritonitis virus. J Virol. 2010;84(15):7917-21. DOI: 10.1128/JVI.00964-10.10.1128/JVI.00964-10289760820484511 Search in Google Scholar

26. Vennema H, Poland A, Foley J, Pedersen NC. Feline infectious peritonitis virus arise by mutation from endemic feline enteric corona-viruses. Virology. 1998;243(1):150-7. DOI: 10.1006/viro.1998-9045. Search in Google Scholar

27. Rottier PJM, Nakamura K, Schellen P, Volders H, Haijema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutation in the feline coronavirus spike protein. J Virol. 2005;79(22):14122-30. DOI: 10.1128/JVI.79.22.14122-14130.2005.10.1128/JVI.79.22.14122-14130.2005128022716254347 Search in Google Scholar

28. Hungley ST, Gombold, JL, Lavi E, Weiss SR., MHV-A59 fusion mutants are attenuated and display altered hepatotropism. Virology. 1994;200(1):1-10. DOI: 10.1006/viro.1994.1156.10.1006/viro.1994.11568128613 Search in Google Scholar

29. Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, et al. Memory T-cells responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34(17):2008-14. DOI: 10.1016/j.vaccine.2016.02.063.10.1016/j.vaccine.2016.02.063711561126954467 Search in Google Scholar

30. Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87(5):E1-9. DOI: 10.1161/01.res.87.5.e1.10.1161/01.RES.87.5.e1 Search in Google Scholar

31. Raj VS, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus. Nature. 2013;495(7440):251-4. DOI: 10.1038/nature12005.10.1038/nature12005709532623486063 Search in Google Scholar

32. Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol. 2004:173(6):4030-9. DOI: 10.4049/jimmunol.173.6.4030.10.4049/jimmunol.173.6.403015356152 Search in Google Scholar

33. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-7. DOI: 10.1002/path.1570.10.1002/path.1570716772015141377 Search in Google Scholar

34. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-coverting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-4.10.1038/nature02145709501614647384 Search in Google Scholar

35. Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, et al. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. 2008;372(1):127-35. DOI: 10.1016/j.virol.2007.09.045.10.1016/j.virol.2007.09.045231250118022664 Search in Google Scholar

36. Bertram S, Glowacka I, Muller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like pro-tease. J Virol. 2011;85(24):13363-72. DOI: 10.1128/JVI.05300-11.10.1128/JVI.05300-11323318021994442 Search in Google Scholar

37. Hofmann H, Pohlmann S. Cellular entry of the SARS coronavirus. Trends Microbiol. 2004;12(10):466-72. DOI: 10.1016/j.tim.2004.08.008.10.1016/j.tim.2004.08.008711903115381196 Search in Google Scholar

38. Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. Sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe. 2020;27(4):671-80.e2. DOI: 10.1016/j.chom.2020.03.002.10.1016/j.chom.2020.03.002714269332183941 Search in Google Scholar

39. Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531:118-21.10.1038/nature17200486001626935699 Search in Google Scholar

40. Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA. 2020;323(18):1843-4. DOI: 10.1001/jama.2020.3786.10.1001/jama.2020.3786706652132159775 Search in Google Scholar

41. Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci U S A. 2005;102(33):11876-81. DOI: 10.1073/pnas.0505577102.10.1073/pnas.0505577102118801516081529 Search in Google Scholar

42. Samavati L, Uhal BD. ACE2, much more than just a receptor for SARS-COV-2. Front Cell Infect Microbiol. 2020;10:317. DOI: 10.3389/fcimb.2020.00317.10.3389/fcimb.2020.00317729484832582574 Search in Google Scholar

43. Roca-Ho H, Riera M, Palau V, Pascual J, Soler MJ. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci. 2017;18(3):563. DOI: 10.3390/ijms18030563.10.3390/ijms18030563537257928273875 Search in Google Scholar

44. Marian AJ. The discovery of the ACE2 gene. Circ Res. 2013;112(10):1307-9. DOI: 10.1161/CIRCRESAHA.113.301271.10.1161/CIRCRESAHA.113.30127123661710 Search in Google Scholar

45. Sharma AR, Batra G, Kumar M, Mishra A, Singla R, Singh A, et al. BCG as a game-changer to prevent the infection and severity of Covid-19 pandemic? Allergol Immunopathol (Madr). 2020;48(5): 507-17. DOI: 10.1016/j.aller.2020.05.002.10.1016/j.aller.2020.05.002733293432653224 Search in Google Scholar

46. Jeffers SA, Tussel SM, Gillim-Ros L, Hemmila EM, Achenbach JE, Babcock GJ, et al. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci U S A. 2004;101(44):15748-53. DOI: 10.1073/pnas.0403812101.10.1073/pnas.040381210152483615496474 Search in Google Scholar

47. Jeffers SA, Hemmila EM, Holmes KV. Human coronavirus 229E can use CD209L (L-SIGN) to enter cells. Adv Exp Med Biol. 2006;581:265-9. DOI: 10.1007/978-0-387-33012-9_44.10.1007/978-0-387-33012-9_44712361117037540 Search in Google Scholar

48. Han DP, Lohani M, Cho MW. Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J. Virol. 2007;81(21):12029-39. DOI: 10.1128/JVI.00315-07.10.1128/JVI.00315-07216878717715238 Search in Google Scholar

49. Malik YS, Sircar S, Bhat S, Sharun K, Dhama K, Dadar M, Tiwari R, et al. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet Q. 2020;40(1):68-76. DOI: 10.1080/01652176.2020.1727993.10.1080/01652176.2020.1727993705494032036774 Search in Google Scholar

50. Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, Rabaan AA, Sah R, Paniz-Mondolfi A, et al. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus Epidemic. Infez Med. 2020;28(1):3-5. Search in Google Scholar

51. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92:433-40. DOI: 10.1002/jmv.25682.10.1002/jmv.25682713808831967321 Search in Google Scholar

52. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol. 2019;17(3):181-92. DOI: 10.1038/s41579-018-0118-9.10.1038/s41579-018-0118-9709700630531947 Search in Google Scholar

53. DeDiego ML, Nieto-Torres JL, Jimenez-Guardeno JM, Regla-Nava JA, Alvarez E, Oliveros JC, et al. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PloS Pathog. 2011;7(10):e1002315. DOI: 10.1371/journal.ppat.1002315.10.1371/journal.ppat.1002315319762122028656 Search in Google Scholar

54. Favreau DJ, Meessen-Pinard M, Desforges M, Talbot PJ. Human coronavirus-induced neuronal programmed cell death is cyclophilin d dependent and potentially caspase dispensable. J Virol. 2012;86(1):81-93. DOI: 10.1128/JVI.06062-11.10.1128/JVI.06062-11325591222013052 Search in Google Scholar

55. Walter J, Heng NCK, Hammes WP, Loach DM, Tannock GW, Hertel C. Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol.2033;69(4):2044-51. DOI: 10.1128/AEM.69.4.2044-2051.2003.10.1128/AEM.69.4.2044-2051.200315480512676681 Search in Google Scholar

56. Sun Z, Kong J, Hu S, Kong W, Lu W, Liu W. Characterization of a S-layer protein from Lactobacillus crispatus K313 and the domains responsible for binding to cell wall and adherence to collagen. Appl Microbiol Biotechnol. 2013;97(5):1941-52. DOI: 10.1007/s00253-012-4044-x.10.1007/s00253-012-4044-x22526799 Search in Google Scholar

57. Penders J, Thijs C, Mommers M, Stobberingh EE, Dompeling E, Rejimerink NE, et al. Intestinal lactobacilli and the DC-SIGN gene for their recognition by dendritic cells play a role in the aetiology of allergic manifestations. Microbiology (Reading). 2010;156(Pt 11):3298-305. DOI: 10.1099/mic.0.042069-0.10.1099/mic.0.042069-020829290 Search in Google Scholar

58. Khoo US, Chan KYK, Chan VSF, Lin CLS. DC-SIGN and L-SIGN: the SIGNs for infection. J Mol Med (Berl). 2008;86(8):861-74. DOI: 10.1007/s00109-008-0350-2.10.1007/s00109-008-0350-2707990618458800 Search in Google Scholar

59. Alen MMF, Kaptein SJK, De Burghgraeve T, Balzarini J, Neyts J, Schols D. Antiviral activity of carbohydrate-binding agents and the role of DC-SIGN in dengue virus infection. Virology. 2009;387(1):67-75. DOI: 10.1016/j.virol.2009.01.043.10.1016/j.virol.2009.01.04319264337 Search in Google Scholar

60. Konstantinov SR, Smidt H, de Vos WM, Brujins SCM, Singh SK, Valence F, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A. 2008;105(49):19474-9. DOI: 10.1073/pnas.0810305105.10.1073/pnas.0810305105259236219047644 Search in Google Scholar

61. Zhang Y, Xiang X, Lu Q, Zhang L, Ma F, Wang L. Adhesions of extracellular surface-layer associated proteins in Lactobaccilus M5-L and Q8-L. J Dairy Sci. 2016;99(2):1011-8. DOI: 10.3168/jds.2015-10020.10.3168/jds.2015-1002026709174 Search in Google Scholar

62. Gilbert C, Atlan D, Blanc B, Portailer R, Germond JE, Lapierre L, et al. A new cell surface proteinase: sequencing and analysis of the prtB gene from Lactobacillus delbrueckii subsp. bulgaricus. J Bacteriol. 1996;178(11):3059-65. DOI: 10.1128/jb.178.11.3059-3065.1996.10.1128/jb.178.11.3059-3065.19961780528655480 Search in Google Scholar

63. Hynonen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol. 2013;97(12):5225-43. DOI: 10.1007/s00253-013-4962-2.10.1007/s00253-013-4962-2366612723677442 Search in Google Scholar

64. Martinez MG, Acosta MP, Candurra NA, Ruzal SM. S-layer proteins of Lactobacillus acidophilus inhibits JUNV infection. Biochem Biophys Res Commun. 2012;422(4):590-5. DOI: 10.1016/j.bbrc.2012.05.031.10.1016/j.bbrc.2012.05.031712425022595457 Search in Google Scholar

65. Lee YJ, Lee C. Porcine deltacoronavirus induces caspase-dependent apoptosis through activation of the cytochrome c-mediated intrinsic mitochondrial pathway. Virus Res. 2018;253:112-3. DOI: 10.1016/j.virusres.2018.06.008.10.1016/j.virusres.2018.06.008711486629940190 Search in Google Scholar

66. Huang MM, Yu HD, Guo LJ, Chen JF, Feng L, Wang YE, et al. Induction of apoptosis in Vero-E6 cells infected with porcine epidemic diarrhea virus. Chin J Prev Vet Med. 2014;36(12):926-9. Search in Google Scholar

67. Kim Y, Lee C. Porcine epidemic diarrhea virus induces caspase-independent apoptosis through activation of mitochondrial apoptosis-inducing factor. Virology. 2014;460-461:180-93. DOI: 10.1016/j.virol.2014.04.040.10.1016/j.virol.2014.04.040712772025010284 Search in Google Scholar

68. Faherty CS, Maurelli AT. Staying alive: bacterial inhibition of apoptosis during infection. Trends Microbiol. 2008;16(4):173-80. DOI: 10.1016/j.tim.2008.02.001.10.1016/j.tim.2008.02.001274694818353648 Search in Google Scholar

69. Li P, Ye X, Yang Q. Antagonistic activity of Lactobacillus acidophilus ATCC 4356 S-layer protein on Salmonella enterica subsp. enterica serovar Typhimurium in Caco-2 cells. Ann Microbiol. 2012;62:905-9.10.1007/s13213-011-0327-1 Search in Google Scholar

70. Acosta MP, Ruzal SM, Cordo SM. S-layer proteins from Lactobacillus sp. inhibit bacterial infection by blockage of DC-SIGN cell receptor. Int J Biol Macromol. 2016;92:998-1005. DOI: 10.1016/j.ijbiomac.2016.07.096.10.1016/j.ijbiomac.2016.07.09627498415 Search in Google Scholar

71. Gupta PK. New disease old vaccine: Is recombinant BCG vaccine an answer for COVID-19? Cell Immunol. 2020;356:104187. DOI: 10.1016/j.cellimm.2020.104187.10.1016/j.cellimm.2020.104187738678032745670 Search in Google Scholar

72. Wardhana EA, Datau EA, Sultana A, Mandang VVV, Jum E. The efficacy of Bacillus Calmette-Guérin vaccination for the prevention of acute upper respiratory tract infection in elderly. Acta Med Indones. 2011;43(3):185-90. Search in Google Scholar

73. Leentjens J, Kox M, Stokman R, Gerretsen J, Diavatopoulos DA, van Crevel R, et al. BCG vaccination enhances the immunogenicity of subsequent influenza vaccination in healthy volunteers: A randomised, placebo-controlled pilot study. J Infect Dis. 2015;212(12):1930-8. DOI: 10.1093/infdis/jiv.332. Search in Google Scholar

74. Miller A, Reandelar MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. medRxiv [Internet]. Available from: https://www.medrxiv.org/content/10.1101/2020.03.24.20042937v2. DOI: http://dx.doi.org/10.1101/2020.03.24.20042937.10.1101/2020.03.24.20042937 Search in Google Scholar

75. Joya M, Malavika B., Asirvatham ES, Sudarsanam TD, Jeyaseelan L. Is BCG associated with reduced incidence of COVID-19? A meta-regression of global data from 160 countries. Clin Epidemiol Glob Health. 2021;9:202-3. DOI: 10.1016/j,cegh.2020.08.015. Search in Google Scholar

76. Maheshwari N, Jain A. Is there a rationale for using Bacillus Calmette-Guerin vaccine in coronavirus infection? Viral Immunol. 2020. DOI: 10.1089/vim.2020.0079. [Online ahead of print]10.1089/vim.2020.007932857679 Search in Google Scholar

77. Goodridge HS, Ahmed SS, Curtis N, Kollmann TR, Levy O, Netea MG, et al. Harnessing the beneficial heterologous effects of vaccination. Nat Rev Immunol. 2016;16(6):392-400. DOI: 10.1038/nri.2016.43.10.1038/nri.2016.43493128327157064 Search in Google Scholar

78. Mathurin KS, Martens GW, Kornfeld H, Welsh RM. CD4 T-cell-mediated heterologous immunity between mycobacteria and poxviruses. J Virol. 2009;83(8):3528-39. DOI : 10.1128/JVI.02393-08.10.1128/JVI.02393-08266327219193795 Search in Google Scholar

79. Vetskova EK, Muhtarova MN, Avramov TI, Stefanova TR, Chalakov IJ, Nikolova MH. Immunomodulatory effects of BCG in patients with recurrent respiratory papillomatosis. Folia Med (Plovdiv). 2013;55(1):49-54. DOI: 10.2478/folmed-2013-0005.10.2478/folmed-2013-000523905487 Search in Google Scholar

80. Ramesh S. 100-year-old TB vaccine now being tested for Covid-19, India may conduct a trial too. The Print [Internet]. [25 March 2020]. Available from: https://theprint.in/health/100-year-old-tbvaccine-now-being-tested-for-covid-19-india-may-conduct-a-trial-too/387839/. Search in Google Scholar

81. Covian C, Fernandez-Fierro A, Retamal-Diaz A, Diaz FE, Vasquez AE, Lay MK, et al. BCG-induced cross-protection band development of trained immunity: implication for vaccine design. Front Immunol. 2019;10:2806. DOI: 10.3389/fimmu.2019.02806.10.3389/fimmu.2019.02806689690231849980 Search in Google Scholar

82. Arts RJ, Moorlag SJCFM, Novakovic B, Li Y, Wang SY, Oosting M, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89-100.e5. DOI: 10.1016/j.chom.2017.12.010.10.1016/j.chom.2017.12.01029324233 Search in Google Scholar

83. Israr M, DeVoti JA, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Altered monocyte and langerhans cell immunity in patients with recurrent respiratory papillomatosis (RRP). Front Immunol. 2020.11:336. DOI: 10.3389/fimmu.2020.00336.10.3389/fimmu.2020.00336707611432210959 Search in Google Scholar

eISSN:
2393-3356
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other, Surgery, Otorhinolaryngology, Speech, Voice and Paediatric Hearing Disorders, Oromaxillofacial Surgery