Acceso abierto

Possibility of applying geoinformation multiagent optimisation for planning the development of road networks

 y   
26 oct 2021

Cite
Descargar portada

Burshtynska, H. (2001). Comparative analysis of the construction of digital terrain models using approximation functions. Geodesy, cartography and ariel photography, 61:137–148. BurshtynskaH. 2001 Comparative analysis of the construction of digital terrain models using approximation functions Geodesy, cartography and ariel photography 61 137 148 Search in Google Scholar

Chulin, H. and Geng, K. K. (2016). Route planning based on cloud-points maps and improved ant-colony algorithm. Technical Sciences, Izvestiya Tula State University, pages 80–88. ChulinH. GengK. K. 2016 Route planning based on cloud-points maps and improved ant-colony algorithm Technical Sciences, Izvestiya Tula State University 80 88 Search in Google Scholar

Dorigo, M. and Stützle, T. (2010). Ant Colony Optimization: Overview and Recent Advances, pages 227–263. Springer US, Boston, MA, doi: 10.1007/978-1-4419-1665-5_8. DorigoM. StützleT. 2010 Ant Colony Optimization: Overview and Recent Advances 227 263 Springer US, Boston, MA 10.1007/978-1-4419-1665-5_8 Open DOISearch in Google Scholar

Huang, G., Cai, Y., and Cai, H. (2018). Multi-agent ant colony optimization for vehicle routing problem with soft time windows and road condition. In MATEC web of conferences, volume 173, page 02020. EDP Sciences, doi: 10.1051/matecconf/201817302020. HuangG. CaiY. CaiH. 2018 Multi-agent ant colony optimization for vehicle routing problem with soft time windows and road condition In MATEC web of conferences 173 02020 EDP Sciences 10.1051/matecconf/201817302020 Open DOISearch in Google Scholar

Hulianytskyi, L. (2017). Search diversification in ant colony optimization algorithms. Theory of optimal solutions, 1:47–57. HulianytskyiL. 2017 Search diversification in ant colony optimization algorithms Theory of optimal solutions 1 47 57 Search in Google Scholar

Hutsul, T. (2018). Productivity analysis and special conditions of the functioning of the method of geoinformation multiagent optimization of the planning of transport flows of the road network. Urban Planning and Spatial Planning, 68:689–705. HutsulT. 2018 Productivity analysis and special conditions of the functioning of the method of geoinformation multiagent optimization of the planning of transport flows of the road network Urban Planning and Spatial Planning 68 689 705 Search in Google Scholar

Hutsul, T. and Smirnov, Y. (2017). Comparative accuracy assessment of global dtm and dtm generated from soviet topographic maps for the purposes of road planning. Geodesy and Cartography, 43(4):173–181, doi: doi.org/10.3846/20296991.2017.1412638. HutsulT. SmirnovY. 2017 Comparative accuracy assessment of global dtm and dtm generated from soviet topographic maps for the purposes of road planning Geodesy and Cartography 43 4 173 181 doi.org/10.3846/20296991.2017.1412638 Open DOISearch in Google Scholar

Kalamdhad, A. S., Singh, J., and Dhamodharan, K. (2016). Advances in waste management. Select Proceedings of Recycle, Springer. KalamdhadA. S. SinghJ. DhamodharanK. 2016 Advances in waste management Select Proceedings of Recycle, Springer 10.1007/978-981-13-0215-2 Search in Google Scholar

Karadimas, N. V., Kolokathi, M., Defteraiou, G., and Loumos, V. (2007). Ant colony system vs arcgis network analyst: the case of municipal solid waste collection. In 5th WSEAS international conference on environment, ecosystems and development, pages 128–34. Citeseer, doi: doi.org/10.13140/2.1.3676.9600. KaradimasN. V. KolokathiM. DefteraiouG. LoumosV. 2007 Ant colony system vs arcgis network analyst: the case of municipal solid waste collection In 5th WSEAS international conference on environment, ecosystems and development 128 34 Citeseer doi.org/10.13140/2.1.3676.9600 Open DOISearch in Google Scholar

Khazin, V. (2012). Principles of tracing bypass roads around settlements. Urban Planning and Spatial Planning, 45(3):159–164. KhazinV. 2012 Principles of tracing bypass roads around settlements Urban Planning and Spatial Planning 45 3 159 164 Search in Google Scholar

Kochegurova, E., Martynov, Y., Martynova, Y., and Tsapko, S. (2014). Ant colony algorithm for rational route network design of urban public transport. VestnikSibGUTI, 27(3):89–100. KochegurovaE. MartynovY. MartynovaY. TsapkoS. 2014 Ant colony algorithm for rational route network design of urban public transport VestnikSibGUTI 27 3 89 100 Search in Google Scholar

Kuzmin, I. and Lotysh, V. (2012). Ant algorithms. Computer-integrated technologies: education, science, production, 9:61–66. KuzminI. LotyshV. 2012 Ant algorithms Computer-integrated technologies: education, science, production 9 61 66 Search in Google Scholar

Lyashchenko, A. (2002). Conceptual modeling of geographic information systems. Bulletin of Geodesy and Cartography, 4:44–50. LyashchenkoA. 2002 Conceptual modeling of geographic information systems Bulletin of Geodesy and Cartography 4 44 50 Search in Google Scholar

Masoumi, Z., Van Genderen, J., and Sadeghi Niaraki, A. (2021). An improved ant colony optimization-based algorithm for user-centric multi-objective path planning for ubiquitous environments. Geocarto International, 36(2):137–154, doi: 10.1080/10106049.2019.1595176. MasoumiZ. Van GenderenJ. Sadeghi NiarakiA. 2021 An improved ant colony optimization-based algorithm for user-centric multi-objective path planning for ubiquitous environments Geocarto International 36 2 137 154 10.1080/10106049.2019.1595176 Open DOISearch in Google Scholar

Muliarevych, O. (2016). Solving dynamic travelling salesman problem using and colony behavior model in multiagent systems. PhD thesis, Lviv Polytechnic National University. MuliarevychO. 2016 Solving dynamic travelling salesman problem using and colony behavior model in multiagent systems PhD thesis, Lviv Polytechnic National University Search in Google Scholar

Qiu, Y. and Xu, X. (2018). Rpsbpt: A route planning scheme with best profit for taxi. In 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), pages 121–126. IEEE, doi: 10.1109/MSN.2018.00027. QiuY. XuX. 2018 Rpsbpt: A route planning scheme with best profit for taxi In 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) 121 126 IEEE 10.1109/MSN.2018.00027 Open DOISearch in Google Scholar

Shtovba, S. (2004). Ant optimization algorithms. Visnyk VNTU, 4:62–69. ShtovbaS. 2004 Ant optimization algorithms Visnyk VNTU 4 62 69 Search in Google Scholar

Shuts, V. (2014). Multiagent motion control vehicles in the road network of the city. Iskusstvennyi Intellekt, (4):123–128. ShutsV. 2014 Multiagent motion control vehicles in the road network of the city Iskusstvennyi Intellekt 4 123 128 Search in Google Scholar

Subbotin, S., Oleynik, A., and Oleynik, O. (2009). Non-iterative, evolutionary and multiagent methods for the synthesis of fuzzy and neural network models. ZNTU, Zaporozhye. SubbotinS. OleynikA. OleynikO. 2009 Non-iterative, evolutionary and multiagent methods for the synthesis of fuzzy and neural network models ZNTU, Zaporozhye Search in Google Scholar

Vardomatskaja, A., Sharstniou, U., and Alekseeva, Y. (2016). Route optimization using graph theory in the application package. Vestnik of Vitebsk State Technological University, 30(1):130–139. VardomatskajaA. SharstniouU. AlekseevaY. 2016 Route optimization using graph theory in the application package Vestnik of Vitebsk State Technological University 30 1 130 139 Search in Google Scholar

Vodák, R., Bíl, M., and Křivánková, Z. (2018). A modified ant colony optimization algorithm to increase the speed of the road network recovery process after disasters. International journal of disaster risk reduction, 31:1092–1106, doi: doi.org/10.1016/j.ijdrr.2018.04.004. VodákR. BílM. KřivánkováZ. 2018 A modified ant colony optimization algorithm to increase the speed of the road network recovery process after disasters International journal of disaster risk reduction 31 1092 1106 doi.org/10.1016/j.ijdrr.2018.04.004 Open DOISearch in Google Scholar

Yamamoto, K. and Li, X. (2018). A safety evaluation method of evacuation routes in urban areas in case of earthquake disasters using ant colony optimization and geographic information systems (short paper). In 10th International Conference on Geographic Information Science (GIScience 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, doi: 10.4230/LIPIcs.GISCIENCE.2018.68. YamamotoK. LiX. 2018 A safety evaluation method of evacuation routes in urban areas in case of earthquake disasters using ant colony optimization and geographic information systems (short paper) In 10th International Conference on Geographic Information Science (GIScience 2018) Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik 10.4230/LIPIcs.GISCIENCE.2018.68 Open DOISearch in Google Scholar

Yu, K.-M., Lee, M.-G., and Chi, S.-S. (2017). Dynamic path planning based on adaptable ant colony optimization algorithm. In 2017 Sixth International Conference on Future Generation Communication Technologies (FGCT), pages 1–7. IEEE, doi: 10.1109/FGCT.2017.8103732. YuK.-M. LeeM.-G. ChiS.-S. 2017 Dynamic path planning based on adaptable ant colony optimization algorithm In 2017 Sixth International Conference on Future Generation Communication Technologies (FGCT) 1 7 IEEE 10.1109/FGCT.2017.8103732 Open DOISearch in Google Scholar

Zhang, M., Jiang, Z., Wang, L., and Yao, Y. (2017). Research on parallel ant colony algorithm for 3d terrain path planning. In Asian Simulation Conference, pages 74–82. Springer, doi: 10.1007/978-981-10-6463-0_7. ZhangM. JiangZ. WangL. YaoY. 2017 Research on parallel ant colony algorithm for 3d terrain path planning In Asian Simulation Conference 74 82 Springer 10.1007/978-981-10-6463-0_7 Open DOISearch in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Informática, Informática, otros, Geociencias, Geodesia, Cartografía y fotogrametría, Geociencias, otros