This work is licensed under the Creative Commons Attribution 4.0 International License.
Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009; 9:134-42. doi: 10.1038/nrc2587BarnettGCWestCMDunningAMElliottRMColesCEPharoahPDNormal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer2009; 9:134-42. 10.1038/nrc2587Open DOISearch in Google Scholar
Baskar R. Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integr 2010; 1: 13. doi: 10.1186/2041-9414-1-13BaskarR.Emerging role of radiation induced bystander effects: cell communications and carcinogenesis. Genome Integr2010; 1: 13. 10.1186/2041-9414-1-13Open DOISearch in Google Scholar
Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012; 9: 193-9. doi: 10.7150/ijms.3635BaskarRLeeKAYeoRYeohKW.Cancer and radiation therapy: current advances and future directions. Int J Med Sci2012; 9: 193-9. 10.7150/ijms.3635Open DOISearch in Google Scholar
Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 1991; 21: 109-22. doi: 10.1016/0360-3016(91)90171-yEmamiBLymanJBrownACoiaLGoiteinMMunzenriderJETolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys1991; 21: 109-22. 10.1016/0360-3016(91)90171-yOpen DOISearch in Google Scholar
Jurdana M, Cemazar M, Pegan K, Mars T. Effect of ionizing radiation on human skeletal muscle precursor cells. Radiol Oncol 2013; 47: 376-81. doi: 10.2478/raon-2013-0058JurdanaMCemazarMPeganKMarsT.Effect of ionizing radiation on human skeletal muscle precursor cells. Radiol Oncol2013; 47: 376-81. 10.2478/raon-2013-0058Open DOISearch in Google Scholar
Viana W, Lambertz D, Borges E, Melo J, Lambertz K, Amaral A. Late effects of radiation on skeletal muscle: an open field of research. J Biomed Sci Eng 2015; 8: 555-70. doi: 10.4236/jbise.2015.88052VianaWLambertzDBorgesEMeloJLambertzKAmaralA.Late effects of radiation on skeletal muscle: an open field of research. J Biomed Sci Eng2015; 8: 555-70. 10.4236/jbise.2015.88052Open DOISearch in Google Scholar
Jurdana M. Radiation effects on skeletal muscle. Radiol Oncol 2008;42: 15–22. doi: 10.2478/v10019-007-0034-5JurdanaM.Radiation effects on skeletal muscle. Radiol Oncol2008;42: 1522. 10.2478/v10019-007-0034-5Open DOISearch in Google Scholar
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289: 6463-83. doi: 10.1111/febs.16372Waldemer-StreyerRJKimDChenJ.Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J2022; 289: 6463–83. 10.1111/febs.16372Open DOISearch in Google Scholar
Jurdana M. Cancer cachexia-anorexia syndrome and skeletal muscle wasting. Radiol Oncol 2009; 43: 65-75. doi:10.2478/v10019-009-0007-yJurdanaM.Cancer cachexia-anorexia syndrome and skeletal muscle wasting. Radiol Oncol2009; 43: 65-75. doi:10.2478/v10019-009-0007-yOpen DOISearch in Google Scholar
Rogeri PS, Gasparini SO, Martins GL, Costa LKF, Araujo CC, Lugaresi R, et al. Crosstalk between skeletal muscle and immune system: which roles do IL-6 and glutamine play? Front Physiol 2020; 11: 582258. doi: 10.3389/fphys.2020.582258RogeriPSGaspariniSOMartinsGLCostaLKFAraujoCCLugaresiRCrosstalk between skeletal muscle and immune system: which roles do IL-6 and glutamine play?Front Physiol2020; 11: 582258. 10.3389/fphys.2020.582258Open DOISearch in Google Scholar
Tran NV, Evans GR, Kroll SS, Baldwin BJ, Miller MJ, Reece GP, et al. Postoperative adjuvant irradiation: effects on transverse rectus abdominis muscle flap breast reconstruction. Plast Reconstr Surg 2000; 106: 313-20. doi: 10.1097/00006534-200008000-00011TranNVEvansGRKrollSSBaldwinBJMillerMJReeceGPPostoperative adjuvant irradiation: effects on transverse rectus abdominis muscle flap breast reconstruction. Plast Reconstr Surg2000; 106: 313-20. 10.1097/00006534-200008000-00011Open DOISearch in Google Scholar
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9: 493-8. doi: 10.1083/jcb.9.2.493MauroA.Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol1961; 9: 493-8. 10.1083/jcb.9.2.493Open DOISearch in Google Scholar
Relaix F, Bencze M, Borok MJ, Der Vartanian A, Gattazzo F, Mader R, et al. Perspectives on skeletal muscle stem cells. Nat Commun 2021; 12: 692. doi: 10.1038/s41467-020-20760-6RelaixFBenczeMBorokMJDer VartanianAGattazzoFMaderRPerspectives on skeletal muscle stem cells. Nat Commun2021; 12: 692. 10.1038/s41467-020-20760-6Open DOISearch in Google Scholar
Verma M, Asakura Y, Murakonda BSR, Pengo T, Latroche C, Chazaud B, et al. Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and Notch signaling. Cell Stem Cell 2018; 23: 530-43.e9. doi: 10.1016/j.stem.2018.09.007VermaMAsakuraYMurakondaBSRPengoTLatrocheCChazaudBMuscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and Notch signaling. Cell Stem Cell2018; 23: 530-43.e9. 10.1016/j.stem.2018.09.007Open DOISearch in Google Scholar
Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev 2013; 93: 23-67. doi: 10.1152/physrev.00043.2011YinHPriceFRudnickiMA.Satellite cells and the muscle stem cell niche. Physiol Rev2013; 93: 23-67. 10.1152/physrev.00043.2011Open DOISearch in Google Scholar
Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 2017; 72: 19-32. doi: 10.1016/j.semcdb.2017.11.011ZammitPS.Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol2017; 72: 19-32. 10.1016/j.semcdb.2017.11.011Open DOISearch in Google Scholar
Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA, et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102: 777-86. doi: 10.1016/S0092-8674(00)00066-0SealePSabourinLAGirgis-GabardoAMansouriAGrussPRudnickiMAPax7 is required for the specification of myogenic satellite cells. Cell2000; 102: 777-86. 10.1016/S0092-8674(00)00066-0Open DOISearch in Google Scholar
Olguin HC, Yang Z, Tapscott SJ, Olwin BB. Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol 2007; 177: 769-79. doi: 10.1083/jcb.200608122OlguinHCYangZTapscottSJOlwinBB.Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol2007; 177: 769-79. 10.1083/jcb.200608122Open DOISearch in Google Scholar
Chen W, You W, Valencak TG, Shan T. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res Rev 2022; 80: 101688. doi: 10.1016/j.arr.2022.101682ChenWYouWValencakTGShanT.Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res Rev2022; 80: 101688. 10.1016/j.arr.2022.101682Open DOISearch in Google Scholar
Yang W, Hu P. Skeletal muscle regeneration is modulated by inflammation. J Orthop Translat 2018; 13: 25-32. doi: 10.1016/j.jot.2018.01.002YangWHuP.Skeletal muscle regeneration is modulated by inflammation. J Orthop Translat2018; 13: 25-32. 10.1016/j.jot.2018.01.002Open DOISearch in Google Scholar
Vierck J, O’Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 2000; 24: 263-72. doi: 10.1006/cbir.2000.0499VierckJO’ReillyBHossnerKAntonioJByrneKBucciLSatellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int2000; 24: 263-72. 10.1006/cbir.2000.0499Open DOISearch in Google Scholar
Tidball JG. Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol 2017; 17: 165-78. doi: 10.1038/nri.2016.150TidballJG.Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol2017; 17: 165-78. 10.1038/nri.2016.150Open DOISearch in Google Scholar
Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 2010; 298: R1173-87. doi: 10.1152/ajpregu.00735.2009TidballJGVillaltaSA.Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol2010; 298: R1173-87. 10.1152/ajpregu.00735.2009Open DOISearch in Google Scholar
Alvarez AM, DeOcesano-Pereira C, Teixeira C, Moreira V. IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells 2020; 9: 2005. doi: 10.3390/cells9092005AlvarezAMDeOcesano-PereiraCTeixeiraCMoreiraV.IL-1β and TNF-α modulation of proliferated and committed myoblasts: IL-6 and COX-2-derived prostaglandins as key actors in the mechanisms involved. Cells2020; 9: 2005. 10.3390/cells9092005Open DOISearch in Google Scholar
Wang L, Wang M, Tang X, Zhang M, Zhang K, Gao B. Mechanistic studies of cyclooxygenase-2 (COX-2) in skeletal muscle cells during rotator cuff injury: an in vitro study. Physiol Res 2024; 73: 769-78. doi: 10.33549/physiolres.935282WangLWangMTangXZhangMZhangKGaoB.Mechanistic studies of cyclooxygenase-2 (COX-2) in skeletal muscle cells during rotator cuff injury: an in vitro study. Physiol Res2024; 73: 769-78. 10.33549/physiolres.935282Open DOISearch in Google Scholar
Fabbrizio P, Margotta C, D’Agostino J, Suanno G, Quetti L, Bendotti C, et al. Intramuscular IL-10 administration enhances the activity of myogenic precursor cells and improves motor function in ALS mouse model. Cells 2023; 12: 1016. doi: 10.3390/cells12071016FabbrizioPMargottaCD’AgostinoJSuannoGQuettiLBendottiCIntramuscular IL-10 administration enhances the activity of myogenic precursor cells and improves motor function in ALS mouse model. Cells2023; 12: 1016. 10.3390/cells12071016Open DOISearch in Google Scholar
Babaeijandaghi F, Paiero A, Long R, Tung LW, Smith SP, Cheng R, et al. TNFα and IFNγ cooperate for efficient pro- to anti-inflammatory transition of macrophages during muscle regeneration. Proc Natl Acad Sci U S A 2022; 119: e2209976119. doi: 10.1073/pnas.2209976119BabaeijandaghiFPaieroALongRTungLWSmithSPChengRTNFα and IFNγ cooperate for efficient pro- to anti-inflammatory transition of macrophages during muscle regeneration. Proc Natl Acad Sci U S A2022; 119: e2209976119. 10.1073/pnas.2209976119Open DOISearch in Google Scholar
Grzelkowska-Kowalczyk K, Wicik Z, Majewska A, Tokarska J, Grabiec K, Kozłowski M, et al. Transcriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J Interferon Cytokine Res 2015; 35: 8999. doi: 10.1089/jir.2014.0018Grzelkowska-KowalczykKWicikZMajewskaATokarskaJGrabiecKKozłowskiMTranscriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J Interferon Cytokine Res2015; 35: 8999. 10.1089/jir.2014.0018Open DOISearch in Google Scholar
Zhuang S, Russell A, Guo Y, Xu Y, Xiao W. IFN-γ blockade after genetic inhibition of PD-1 aggravates skeletal muscle damage and impairs skeletal muscle regeneration. Cell Mol Biol Lett 2023; 28: 27. doi: 10.1186/s11658-023-00439-8ZhuangSRussellAGuoYXuYXiaoW.IFN-γ blockade after genetic inhibition of PD-1 aggravates skeletal muscle damage and impairs skeletal muscle regeneration. Cell Mol Biol Lett2023; 28: 27. 10.1186/s11658-023-00439-8Open DOISearch in Google Scholar
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012; 8: 457-65. doi: 10.1038/nrendo.2012.49PedersenBKFebbraioMA.Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol2012; 8: 457-65. 10.1038/nrendo.2012.49Open DOISearch in Google Scholar
Whitham M, Febbraio MA. The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov 2016; 15: 719-29. doi: 10.1038/nrd.2016.153WhithamMFebbraioMA.The ever-expanding myokinome: discovery challenges and therapeutic implications. Nat Rev Drug Discov2016; 15: 719-29. 10.1038/nrd.2016.153Open DOISearch in Google Scholar
Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 2012; 8: 1237-47. doi: 10.7150/ijbs.4989Rose-JohnS.IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci2012; 8: 1237-47. 10.7150/ijbs.4989Open DOISearch in Google Scholar
Carnac G, Vernus B, Bonnieu A. Myostatin in the pathophysiology of skeletal muscle. Curr Genomics 2007; 8: 41522. doi: 10.2174/138920207783591672CarnacGVernusBBonnieuA.Myostatin in the pathophysiology of skeletal muscle. Curr Genomics2007; 8: 41522. 10.2174/138920207783591672Open DOISearch in Google Scholar
Theret M, Rossi FMV, Contreras O. Evolving roles of muscle-resident fibroadipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front Physiol 2021; 12: 673404. doi: 10.3389/fphys.2021.673404TheretMRossiFMVContrerasO.Evolving roles of muscle-resident fibroadipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front Physiol2021; 12: 673404. 10.3389/fphys.2021.673404Open DOISearch in Google Scholar
Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 2010; 12: 143-52. doi: 10.1038/ncb2014UezumiAFukadaSYamamotoNTakedaSTsuchidaK.Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol2010; 12: 143-52. 10.1038/ncb2014Open DOISearch in Google Scholar
Joe AWB, Yi L, Natarajan A, Le Grand F, So L, Wang J, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2010; 12: 153-63. doi: 10.1038/ncb2015JoeAWBYiLNatarajanALe GrandFSoLWangJMuscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol2010; 12: 153-63. 10.1038/ncb2015Open DOISearch in Google Scholar
Collao N, D’Souza D, Messeiller L, Pilon E, Lloyd J, Larkin J, et al. Radiation induces long-term muscle fibrosis and promotes a fibrotic phenotype in fibro-adipogenic progenitors. J Cachexia, Sarcopenia Muscle 2023; 14: 233549. doi: 10.1002/jcsm.13320CollaoND’SouzaDMesseillerLPilonELloydJLarkinJRadiation induces long-term muscle fibrosis and promotes a fibrotic phenotype in fibro-adipogenic progenitors. J Cachexia, Sarcopenia Muscle2023; 14: 233549. 10.1002/jcsm.13320Open DOISearch in Google Scholar
Gerstner HB, Lewis RB, Richey EO. Early effects of high intensity X-radiation on skeletal muscle. J Gen Physiol 1953; 37: 445-59. doi: 10.1085/jgp.37.4.445GerstnerHBLewisRBRicheyEO.Early effects of high intensity X-radiation on skeletal muscle. J Gen Physiol1953; 37: 445-59. 10.1085/jgp.37.4.445Open DOISearch in Google Scholar
Ahlersová E, Ahlers I, Slavkovská E, Praslicka M. Metabolic changes after non-lethal X-irradiation of rats. I. Carbohydrates, hormones. Folia Biol (Praha) 1981; 27: 404-12. PMID: 7035232AhlersováEAhlersISlavkovskáEPraslickaM.Metabolic changes after non-lethal X-irradiation of rats. I. Carbohydrates, hormones. Folia Biol (Praha)1981; 27: 404-12. PMID: 7035232Search in Google Scholar
Pitkanen MA, Hopewell JW. Functional changes in the vascularity of the irradiated rat femur. Implications for late effects. Acta Radiol Oncol 1983; 22: 253–6. doi: 10.3109/02841868309134038PitkanenMAHopewellJW.Functional changes in the vascularity of the irradiated rat femur. Implications for late effects. Acta Radiol Oncol1983; 22: 253–6. 10.3109/02841868309134038Open DOISearch in Google Scholar
Adams GR, Caiozzo VJ, Haddad F> Baldwin KM. Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol 2002; 283: C1182-95. doi: 10.1152/ajpcell.00173.2002AdamsGRCaiozzoVJHaddad F> BaldwinKM.Cellular and molecular responses to increased skeletal muscle loading after irradiation. Am J Physiol Cell Physiol2002; 283: C1182-95. 10.1152/ajpcell.00173.2002Open DOISearch in Google Scholar
Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–9. doi: 10.1126/science.1082504Garcia-BarrosMParisFCordon-CardoCLydenDRafiiSHaimovitz-FriedmanATumor response to radiotherapy regulated by endothelial cell apoptosis. Science2003; 300: 1155–9. 10.1126/science.1082504Open DOISearch in Google Scholar
Avelino SOM, Neves RM, Sobral-Silva LA, Tango RN, Federico CA, Vegian MRC, et al. Evaluation of the effects of radiation therapy on muscle contractibility and skin healing: an experimental study of the cancer treatment implications. Life (Basel) 2023; 13: 1838. doi: 10.3390/life13091838AvelinoSOMNevesRMSobral-SilvaLATangoRNFedericoCAVegianMRCEvaluation of the effects of radiation therapy on muscle contractibility and skin healing: an experimental study of the cancer treatment implications. Life (Basel)2023; 13: 1838. 10.3390/life13091838Open DOISearch in Google Scholar
Gallet P, Phulpin B, Merlin JL, Leroux A, Bravetti P, Mecellem H, et al. Longterm alterations of cytokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS One 2011; 6: e29399. doi: 10.1371/journal.pone.0029399GalletPPhulpinBMerlinJLLerouxABravettiPMecellemHLongterm alterations of cytokines and growth factors expression in irradiated tissues and relation with histological severity scoring. PLoS One2011; 6: e29399. 10.1371/journal.pone.0029399Open DOISearch in Google Scholar
Horowits R, Kempner ES, Bisher ME, Podolsky RJ. A physiological role for titin and nebulin in skeletal muscle. Nature 1986; 323: 160-64. doi: 10.1038/323160a0HorowitsRKempnerESBisherMEPodolskyRJ.A physiological role for titin and nebulin in skeletal muscle. Nature1986; 323: 160-64. 10.1038/323160a0Open DOISearch in Google Scholar
Schwenen M, Altman KI, Schroder W. Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle. Int J Radiat Biol 1989; 55: 257-69. doi: 10.1080/09553008914550291SchwenenMAltmanKISchroderW.Radiation-induced increase in the release of amino acids by isolated, perfused skeletal muscle. Int J Radiat Biol1989; 55: 257-69. 10.1080/09553008914550291Open DOISearch in Google Scholar
Khizhniak SV, Voitsitskii VM, Ostapchenko SG, Kucherenko NE. [The effect of ionizing radiation on Ca 2+-ATPase activity from the sarcoplasmic reticulum of rabbit skeletal muscles]. [Rusian]. Ukr Biokhim Zh (1978); 1990; 62: 58-63. PMID: 2142349KhizhniakSVVoitsitskiiVMOstapchenkoSGKucherenkoNE.[The effect of ionizing radiation on Ca 2+-ATPase activity from the sarcoplasmic reticulum of rabbit skeletal muscles]. [Rusian]. Ukr Biokhim Zh (1978)1990; 62: 58-63. PMID: 2142349Search in Google Scholar
Wang Y, Guo X, Wang L, Yu H. Melatonin improves muscle injury and differentiation by increasing Pax7 expression. Int J Mol Sci 2023; 24: 4697. doi: 10.3390/ijms24054697WangYGuoXWangLYuH.Melatonin improves muscle injury and differentiation by increasing Pax7 expression. Int J Mol Sci2023; 24: 4697. 10.3390/ijms24054697Open DOISearch in Google Scholar
Jang YC, Van Remmen H. Melatonin restores muscle regeneration and enhances muscle function after crush injury in rats. J Pineal Res 2012; 52: 62-70. doi: 10.1111/j.1600-079X.2011.00919.xJangYCVan RemmenH.Melatonin restores muscle regeneration and enhances muscle function after crush injury in rats. J Pineal Res2012; 52: 62-70. 10.1111/j.1600-079X.2011.00919.xOpen DOISearch in Google Scholar
Ge X, Wang C, Yang G, Maimaiti D, Hou M, Liu H, et al. Enhancement of mitochondrial energy metabolism by melatonin promotes vascularized skeletal muscle regeneration in a volumetric muscle loss model. Free Radic Biol Med 2024; 210: 146-57. doi: 10.1016/j.freeradbiomed.2023.11.021GeXWangCYangGMaimaitiDHouMLiuHEnhancement of mitochondrial energy metabolism by melatonin promotes vascularized skeletal muscle regeneration in a volumetric muscle loss model. Free Radic Biol Med2024; 210: 146-57. 10.1016/j.freeradbiomed.2023.11.021Open DOISearch in Google Scholar
Zhu GZ, Zhao K, Li HZ, Wu DZ, Chen YB, Han D, et al. Melatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cells. Mol Med 2024; 30: 238. doi: 10.1186/s10020-024-00998-2ZhuGZZhaoKLiHZWuDZChenYBHanDMelatonin ameliorates age-related sarcopenia by inhibiting fibrogenic conversion of satellite cells. Mol Med2024; 30: 238. 10.1186/s10020-024-00998-2Open DOISearch in Google Scholar
Mihandoost E, Shirazi A, Mahdavi SR, Aliasgharzadeh A. Can melatonin help us in radiation oncology treatments? Biomed Res Int 2014; 2014: 578137. doi: 10.1155/2014/578137MihandoostEShiraziAMahdaviSRAliasgharzadehA.Can melatonin help us in radiation oncology treatments?Biomed Res Int2014; 2014: 578137. 10.1155/2014/578137Open DOISearch in Google Scholar
Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 2015; 20: 18886-906. doi: 10.3390/molecules201018886TanDXManchesterLCEsteban-ZuberoEZhouZReiterRJ.Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules2015; 20: 18886-906. 10.3390/molecules201018886Open DOISearch in Google Scholar
Najafi M, Shirazi A, Motevaseli E, Geraily G, Norouzi F, Heidari M, et al. The melatonin immunomodulatory actions in radiotherapy. Biophys Rev 2017; 2: 139-48. doi: 10.1007/s12551-017-0256-8NajafiMShiraziAMotevaseliEGerailyGNorouzi F> HeidariMThe melatonin immunomodulatory actions in radiotherapy. Biophys Rev2017; 2: 139-48. 10.1007/s12551-017-0256-8Open DOISearch in Google Scholar
Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P. Muscle wasting and impaired myogenesis in tumor-bearing mice are prevented by ERK inhibition. PLoS One 2010; 5: e13604. doi: 10.1371/journal. pone.0013604PennaFCostamagnaDFanzaniABonelliGBaccinoFMCostelliP.Muscle wasting and impaired myogenesis in tumor-bearing mice are prevented by ERK inhibition. PLoS One2010; 5: e13604. 10.1371/journal. pone.0013604Open DOISearch in Google Scholar
Su CM, Tsai CH, Chen HT, Wu YS, Chang JW, Yang SF, et al. Melatonin improves muscle injury and differentiation by increasing Pax7 expression. Int J Biol Sci 2023; 19: 1049-62. doi: 10.7150/ijbs.79169SuCMTsaiCHChenHTWuYSChangJWYangSFMelatonin improves muscle injury and differentiation by increasing Pax7 expression. Int J Biol Sci2023; 19: 1049-62. 10.7150/ijbs.79169Open DOISearch in Google Scholar
Lee JY, Kim JH, Lee DC. Urine melatonin levels are inversely associated with sarcopenia in postmenopausal women. Menopause 2014; 21: 39-44. doi: 10.1097/GME.0b013e318291f6c8LeeJYKimJHLeeDC.Urine melatonin levels are inversely associated with sarcopenia in postmenopausal women. Menopause2014; 21: 39-44. 10.1097/GME.0b013e318291f6c8Open DOISearch in Google Scholar
Yu D, Cai Z, Li D, Zhang Y, He M, Yang Y, et al. Myogenic differentiation of stem cells for skeletal muscle regeneration. Stem Cells Int 2021; 2021: 8884283. doi: 10.1155/2021/8884283YuDCaiZLiDZhangYHeMYangYMyogenic differentiation of stem cells for skeletal muscle regeneration. Stem Cells Int2021; 2021: 8884283. 10.1155/2021/8884283Open DOISearch in Google Scholar