Cite

Al-Sali, G., Al-Attar, N., Delbosc, S., Louedec, L., Corvazier, E., Loyau, S., Michel, J. B, Pidard, D., Duval, X., Meilhac, O. (2012). Role of vegetation-associated protease activity in valve destruction in human infective endocarditis. PLoS One; 7 (9), e45695. DOI: 10.1371/journal.pone.0045695.344782423029186 Open DOISearch in Google Scholar

Andrews, R. K., Arthur, J. F., Gardiner, E. E. (2014). Neutrophil extra-cellular traps (NETs) and the role of platelets in infection. Thrombosis Haemostasis, 112 (4), 659–665. https://doi.org/10.1160/TH14-05-0455.10.1160/TH14-05-045525265341 Search in Google Scholar

Becerra-Muñoz, V. M., Ruķz-Morales, J., Rodrķguez-Bailón, I., Sánchez-Espķn, G., López-Garrido, M. A., Robledo-Carmona, J., Guijarro-Contreras, A., Garcķa-López, M. V., Ivanova-Georgieva, R., Mora-Navas, L., et al. (2017). Infective endocarditis in patients with bicuspid aortic valve: Clinical characteristics, complications, and prognosis. Enfermed. Infec. Microbiol. Clin., 35 (10), 645–650. https://doi.org/10.1016/j.eimc.2016.06.017.10.1016/j.eimc.2016.06.01727493083 Search in Google Scholar

Brinkmann, V. (2018). Neutrophil extracellular traps in the second decade. J. Innate Immun., 10 (5–6), 414–421. https://doi.org/10.1159/000489829.10.1159/000489829678405129909412 Search in Google Scholar

Brouqui, P., Raoult, D. (2001). Endocarditis due to rare and fastidious bacteria. Clin. Microbiol. Rev., 14 (1), 177–207. https://doi.org/10.1128/CMR.14.1.177-207.2001.10.1128/CMR.14.1.177-207.20018896911148009 Search in Google Scholar

Brumley, D. R., Carrara, F., Hein, A. M., Yawata, Y., Levin, S. A., Stocker, R. (2019). Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natil. Acad. Sci. USA, 166 (22), 10792–10797. https://doi.org/10.1073/pnas.1816621116.10.1073/pnas.1816621116656119131097577 Search in Google Scholar

Buijtendijk, M. F. J., Barnett, P., van den Hoff, M. J. B. (2020). Development of the human heart. Amer. J. Med. Gen., 184 (1), 7–22. https://doi.org/10.1002/ajmg.c.31778.10.1002/ajmg.c.31778707896532048790 Search in Google Scholar

Butcher, J. T., Nerem, R. M. (2007). Valvular endothelial cells and the mechanoregulation of valvular pathology. Philos. Trans. Roy. Soc. B: Biol. Sci., 362, 1445–1457. https://doi.org/10.1098/rstb.2007.2127.10.1098/rstb.2007.2127244040717569641 Search in Google Scholar

Carestia, A., Kaufman, T., Schattner, M. (2016). Platelets: New bricks in the building of neutrophil extracellular traps. Frontiers Immunol., 7, 271. https://doi.org/10.3389/fimmu.2016.00271.10.3389/fimmu.2016.00271493369727458459 Search in Google Scholar

Chambers, H. F., Bayer, A. S. (2020). Native-valve infective endocarditis. New Engl. J. Med., 383 (6), 567–576. https://doi.org/10.1056/nejmcp2000400.10.1056/NEJMcp200040032757525 Search in Google Scholar

Chirillo, F. (2021). New approach to managing infective endocarditis. Trends Cardiovasc. Med., 31 (5), 277–286. https://doi.org/10.1016/j.tcm.2020.04.008.10.1016/j.tcm.2020.04.00832404251 Search in Google Scholar

Etwebi, Z., Landesberg, G., Preston, K., Eguchi, S., Scalia, R. (2018). Mechanistic role of the calcium-dependent protease calpain in the endothelial dysfunction induced by MPO (Myeloperoxidase). Hypertension, 71 (4), 761–770. https://doi.org/10.1161/HYPERTENSIONAHA.117.10305.10.1161/HYPERTENSIONAHA.117.10305646728429507101 Search in Google Scholar

Fournier, P. E., Gouriet, F., Casalta, J. P., Lepidi, H., Chaudet, H., Thuny, F., Collart, F., Habib, G., Raoult, D. (2017). Blood culture-negative endocarditis. Medicine (United States), 96 (47), pe8392. https://doi.org/10.1097/MD.0000000000008392.10.1097/MD.0000000000008392570891529381916 Search in Google Scholar

Gumpangseth, T., Lekawanvijit, S., Mahakkanukrauh, P. (2020). Histo-logical assessment of the human heart valves and its relationship with age. Anat. Cell Biol., 53 (3), 262–271. https://doi.org/10.5115/acb.20.093.10.5115/acb.20.093752711732727956 Search in Google Scholar

Habib, G. (2006). Management of infective endocarditis. Heart, 92 (1), 124–130. https://doi.org/10.1136/hrt.2005.063719.10.1136/hrt.2005.063719186101316365367 Search in Google Scholar

Habib, G., Erba, P. A, Iung, B., Donal E., Cosyns, B., Laroche, C., Popescu, B. A., Prendergast, B., Tornos, P., Sadeghpour, A., et al. (2019). Clinical presentation, aetiology and outcome of infective endocarditis. Results of the ESC-EORP EURO-ENDO (European infective endocarditis) registry: A prospective cohort study. Eur. Heart J., 40 (39), 3222–3232B. DOI: 10.1093/eurheartj/ehz620.31504413 Open DOISearch in Google Scholar

Holland, T. L., Baddour, L. M., Bayer, A. S., Hoen, B., Miro, J. M., Fowler, V. G. (2016). Infective endocarditis. Nat. Rev. Dis. Primers, 2, 16059. https://doi.org/10.1038/nrdp.2016.59.10.1038/nrdp.2016.59524092327582414 Search in Google Scholar

Houard, V., Porte, L., Delon, C., Carrié, D., Delobel, P., Galinier, M., Lairez, O., Lavie-Badie Y. (2020). Prognostic value of residual vegetation after antibiotic treatment for infective endocarditis: A retrospective cohort study. Int. J. Infect. Dis., 94, 34–40. https://doi.org/10.1016/j.ijid.2020.03.005.10.1016/j.ijid.2020.03.00532169691 Search in Google Scholar

Hsu. C. C., Hsu, R. B., Ohniwa, R. L., Chen, J. W., Yuan, C. T., Chia, J. S., Jung. C. J. (2019). Neutrophil extracellular traps enhance Staphylococcus aureus vegetation formation through interaction with platelets in infective endocarditis. Thromb. Haemostasis, 119 (5), 786–796. https://doi.org/10.1055/s-0039-1678665.10.1055/s-0039-167866530731490 Search in Google Scholar

Hu, W., Wang, X., Su, G. (2021). Infective endocarditis complicated by embolic events: Pathogenesis and predictors. Clin. Cardiol., 44 (3), 307–315. https://doi.org/10.1002/clc.23554.10.1002/clc.23554794391133527443 Search in Google Scholar

Jung, C. J., Yeh, C. Y., Hsu, R. B., Lee, C. M., Shun, C. T., Chia, J. S. (2015). Endocarditis pathogen promotes vegetation formation by inducing intravascular neutrophil extracellular traps through activated platelets. Circulation, 131 (6), 571–581. https://doi.org/10.1161/CIRCULATIONAHA.114.011432.10.1161/CIRCULATIONAHA.114.01143225527699 Search in Google Scholar

Kim, J. H., Lee, H. J., Ku, N. S., Lee S. H., Lee, S., Choi, J. Y., Yoem J. S. (2021). Infective endocarditis at a tertiary care hospital in South Korea. Heart, 107 (2), 135–141. DOI: 10.1136/heartjnl-2020-317265.778825733033067 Open DOISearch in Google Scholar

Kim, S. J., Jenne, C.N. (2016). Role of platelets in neutrophil extracellular trap (NET) production and tissue injury. Semin. Immunol., 28 (6), 546–554. https://doi.org/10.1016/j.smim.2016.10.013.10.1016/j.smim.2016.10.01327876233 Search in Google Scholar

Kupferwasser, L. I., Bayer, A. S. (2001). Kulturnegative endokarditis: Ätiologie, diagnostik, management und therapie. Herz, 26 (6), 398–408. https://doi.org/10.1007/s00059-001-2314-y.10.1007/s00059-001-2314-y11683070 Search in Google Scholar

Lerche, C. J., Schwartz, F., Theut, M., Fosbøl, E. L., Iversen, K., Bundgaard, H., Høiby, N., Moser, C. (2021). Anti-biofilm approach in infective endocarditis exposes new treatment strategies for improved outcome. Frontiers Cell Devel. Biol., 9, 643335. https://doi.org/10.3389/fcell.2021.643335.10.3389/fcell.2021.643335824980834222225 Search in Google Scholar

Liesenborghs, L., Meyers, S., Vanassche, T., Verhamme, P. (2020). Coagulation: At the heart of infective endocarditis. Thromb. Haemostasis, 18 (5), 995–1008. https://doi.org/10.1111/jth.14736.10.1111/jth.1473631925863 Search in Google Scholar

Luehr, M., Bauernschmitt, N., Peterss, S., Li, Y., Heyn, O., Dashkevich, A., Oberbach, A., Bagaev, E., Pichlmaier, M. A., Juchem, G., et al. (2020). Incidence and surgical outcomes of patients with native and prosthetic aortic valve endocarditis. Ann. Thor. Surg., 110 (1), 93–101. https://doi.org/10.1016/j.athoracsur. Search in Google Scholar

Middleton, E. A., He, X. Y., Denorme, F., Campbell, R. A., Ng, D., Salvatore, S. P., Mostyka, M., Baxter-Stolzfus, A., Borczuk, A. C., Loda, M., et al.(2020). Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood, 136 (10), 1169–1179. https://doi.org/10.1182/blood.2020007008/1747487/blood.2020007008.pdf. Search in Google Scholar

O’Donnell, A., Yutz, K. E. (2020). Mechanisms of heart valve development and disease. Development, 147 (13), dev183020. https://doi.org/10.1242/dev.183020.10.1242/dev.183020733827132620577 Search in Google Scholar

Rajani, R., Klein, J. L. (2020). Infective endocarditis: A contemporary update. Clin. Med. J. Roy. Coll. Phys. London, 20 (1), 31–35. DOI: 10.7861/clinmed.cme.20.1.1.696416331941729 Open DOISearch in Google Scholar

Rutkovskiy, A., Malashicheva, A., Sullivan, G., Bogdanova, M., Kostareva, A., Stensløkken, K. O., Fiane, A., Vaage, J. (2017). Valve interstitial cells: The key to understanding the pathophysiology of heart valve calcification. J. Amer. Heart Assoc., 6 (9), 1–24. https://doi.org/10.1161/JAHA.117.006339.10.1161/JAHA.117.006339563428428912209 Search in Google Scholar

Sacks, M. S., Merryman, W. D., Schmidt, D. E. (2009). On the biomechanics of heart valve function. J. Biomech., 42 (12), 1804–1824. https://doi.org/10.1016/j.jbiomech.2009.05.015.10.1016/j.jbiomech.2009.05.015274696019540499 Search in Google Scholar

Salem, M., Friedrich, C., Saad, M., Frank, D., Salem, M., Puehler, T., Schoettler, J., Schoeneich, F., Cremer, J., Haneya, A. (2021). Active infective native and prosthetic valve endocarditis: Short-and long-term outcomes of patients after surgical treatment. J. Clin. Med., 10 (9), 1868. https://doi.org/10.3390/jcm10091868.10.3390/jcm10091868812348633925866 Search in Google Scholar

Schoen, F. J. (2018). Morphology, clinicopathologic correlations, and mechanisms in heart valve health and disease. Cardiovasc. Eng. Technol., 9 (2), 126–140. https://doi.org/10.1007/s13239-016-0277-7.10.1007/s13239-016-0277-727502286 Search in Google Scholar

Sotero, D. F., Rosário, M., Fonseca, A. C., Ferro, M. J. (2019). Neurological complications of infective endocarditis. Curr. Neurol. Neurosci. Rep., 19 (5), 8–94. https://doi.org/10.1007/s11910-019-0935-x.10.1007/s11910-019-0935-x30927133 Search in Google Scholar

Tayem, M. G., Shahin, L., Shook, J., Kesselman, M. M. (2022). A review of cardiac manifestations in patients with systemic lupus erythematosus and antiphospholipid syndrome with focus on endocarditis. Cureus, 14 (1), e21698. https://doi.org/10.7759/cureus.21698.10.7759/cureus.21698888445735242470 Search in Google Scholar

Trifunovic, D., Vujisic-Tesic, B., Obrenovic-Kircanski, B., Ivanovic, B., Kalimanovska-Ostric, D., Petrovic, M., Boricic-Kostic, M., Matic, S., Stevanovic, G., Marinkovic, J., et al. (2018). The relationship between causative microorganisms and cardiac lesions caused by infective endocarditis: New perspectives from the contemporary cohort of patients. J. Cardiology, 71 (3), 291–298. https://doi.org/10.1016/j.jjcc.2017.08.010.10.1016/j.jjcc.2017.08.01029055511 Search in Google Scholar

Yang, A., Tan, C., Daneman, N., Hansen, M. S., Habib, G., Salaun, E., Lavoute, C., Hubert, S., Adhikari, N. K. J. (2019). Clinical and echo-cardiographic predictors of embolism in infective endocarditis: Systematic review and meta-analysis. Clin. Microbiol. Infect., 25 (2), 178–187. https://doi.org/10.1016/j.cmi.2018.08.010.10.1016/j.cmi.2018.08.01030145401 Search in Google Scholar

Zegri-Reiriz, I., de Alarcón, A., Muñoz, P., Martķnez Sellés, M., González-Ramallo, V., Miro, J. M., Falces, C., Gonzalez Rico, C., Kortajarena Urkola, X., Lepe, J. A., et al. (2018). Infective endocarditis in patients with bicuspid aortic valve or mitral valve prolapse. J. Amer. Coll. Cardiol., 71 (24), 2731–2740. https://doi.org/10.1016/j.jacc.2018.03.534.10.1016/j.jacc.2018.03.53429903346 Search in Google Scholar

eISSN:
2255-890X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
General Interest, Mathematics, General Mathematics