Acceso abierto

Research on the Application of Cold Energy of Largescale Lng-Powered Container Ships to Refrigerated Containers


Cite

1. X. Gu, G. Jiang, Z. Guo, and S. Ding, ‘Design and Experiment of Low-Pressure Gas Supply System for Dual Fuel Engine’, Polish Marit. Res., vol. 27, no. 2, 2020, doi: 10.2478/pomr-2020-0029.10.2478/pomr-2020-0029 Search in Google Scholar

2. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units’, Polish Marit. Res., vol. 26, no. 3, 2019, doi: 10.2478/pomr-2019-0059.10.2478/pomr-2019-0059 Search in Google Scholar

3. S. Serbin, B. Diasamidze, and M. Dzida, ‘Investigations of the working process in a dual-fuel low-emission combustion chamber for an fpso gas turbine engine’, Polish Marit. Res., vol. 27, no. 3, 2020, doi: 10.2478/pomr-2020-0050.10.2478/pomr-2020-0050 Search in Google Scholar

4. T.C. Van, J. Ramirez, T. Rainey, et al. ‘Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions’, Transportation Research Part D, vol. 70, 2019, doi: 10.1016/j.trd.2019.04.001.10.1016/j.trd.2019.04.001 Search in Google Scholar

5. L.P Perera, and B. Mo, ‘Emission Control Based Energy Efficiency Measures in Ship Operations’, Applied Ocean Research, vol. 60, 2016, doi: 10.1016/j.apor.2016.08.006.10.1016/j.apor.2016.08.006 Search in Google Scholar

6. H.P. Nguyen, A.T. Hoang, S. Nizetic, et al. ‘The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review’, International Transactions on Electrical Energy Systems, 2020, doi: 10.1002/2050-7038.12580.10.1002/2050-7038.12580 Search in Google Scholar

7. N.R. Sharma, D. Dimitrios, A.I. Ler, et al. ‘LNG a clean fuel the underlying potential to improve thermal efficiency’, Journal of Marine Engineering & Technology, 2020, doi: 10.1080/20464177.2020.1827491.10.1080/20464177.2020.1827491 Search in Google Scholar

8. I. Mallidis, S. Despoudi, R. Dekker, et al. ‘The impact of sulphur limit fuel regulations on maritime supply chain network design’, Annals of Operations Research, vol. 294, no. 8, 2018, doi: 10.1007/s10479-018-2999-4.10.1007/s10479-018-2999-4 Search in Google Scholar

9. L.B. Reinhardt, D. Pisinger, M.M. Sigurd, et al. ‘Speed optimizations for liner networks with business constraint’, European Journal of Operational Research, vol. 285, no. 3, 2020, doi: 10.1016/j.ejor.2020.02.043.10.1016/j.ejor.2020.02.043 Search in Google Scholar

10. Eun, Soo, and Jeong, ‘Optimization of power generating thermoelectric modules utilizing LNG cold energy’, Cryogenics, vol. 88, 2017, doi: 10.1016/j.cryogenics.2017.10.005.10.1016/j.cryogenics.2017.10.005 Search in Google Scholar

11. O. Schinas, and M. Butler, ‘Feasibility and commercial considerations of LNG-fueled ships’, Ocean Engineering, vol. 122, 2016, doi: 10.1016/j.oceaneng.2016.04.031.10.1016/j.oceaneng.2016.04.031 Search in Google Scholar

12. R. Zhao et al., ‘A Numerical and Experimental Study of Marine Hydrogen-Natural Gas-Diesel Tri-Fuel Engines’, Polish Marit. Res., vol. 27, no. 4, 2020, doi: 10.2478/pomr-2020-0068.10.2478/pomr-2020-0068 Search in Google Scholar

13. M. Badami, J.C. Bruno, A. Coronas, and G. Fambri, ‘Analysis of different combined cycles and working fluids for LNG exergy recovery during regasification’, Energy, vol. 159, 2018, doi: 10.1016/j.energy.2018.06.10. Search in Google Scholar

14. B.B. Kanbur, L. Xiang, S. Dubey, F.H. Choo, and F. Duan, ‘Cold utilisation systems of LNG: a review’, Renewable and Sustainable Energy Reviews, vol. 79, 2017, doi: 10.1016/j.rser.2017.05.161.10.1016/j.rser.2017.05.161 Search in Google Scholar

15. J. Dong, S. Huang, S. Li, Y. Yao, Y. Jiang, ‘LNG cold energy used in cold storage refrigeration performance simulation research’, Journal of Harbin Institute of Technology, vol. 49, no. 2, 2017. Search in Google Scholar

16. T. Banaszkiewicz, ‘The Possible Coupling of LNG Regasification Process with the TSA Method of Oxygen Separation from Atmospheric Air’, Entropy, vol. 23, no. 3, 2021, doi: 10.3390/e23030350.10.3390/e23030350 Search in Google Scholar

17. W. Lin, M. Huang, H. He, et al., ‘A transcritical CO2 Rankine Cycle with LNG cold energy utilisation and liquefaction of CO2 in gas turbine exhaust’, Journal of Energy Resources Technology, vol. 131, no. 4, 2009, doi: 10.1115/1.4000176.10.1115/1.4000176 Search in Google Scholar

18. T. Jin, J.J. Hu, G.B. Chen, and K. Tang, ‘Novel air separation unit cooled by liquefied natural gas cold energy and its performance analysis’, Journal of Zhejiang University, vol. 41, no. 5, 2007. Search in Google Scholar

19. E. Baldasso, M.E. Mondejar, S. Mazzoni, et al., ‘Potential of liquefied natural gas cold energy recovery on board ships’, Journal of Cleaner Production, vol. 271, 2020, doi: 10.1016/j.jclepro.2020.122519.10.1016/j.jclepro.2020.122519 Search in Google Scholar

20. H.L. Sang, and K. Park, ‘Conceptual design and economic analysis of a novel cogeneration desalination process using LNG based on clathrate hydrate’, Desalination, vol. 498, 2021, doi: 10.1016/j.desal.2020.114703.10.1016/j.desal.2020.114703 Search in Google Scholar

21. P. Babu, A. Nambiar, R.C. Zheng, et al., ‘Hydrate-based desalination (HyDesal) process employing a novel prototype design’, Chemical Engineering Science, vol. 218, 2020, doi: 10.1016/j.ces.2020.115563.10.1016/j.ces.2020.115563 Search in Google Scholar

22. J. Sun, K. Han, C. Xie, et al., ‘Liquid-solid fluidized bed seawater ice desalination based on LNG cold energy’. Modern Chemical Industry, vol. 40, no. 7, 2020, doi: 10.16606/j.cnki.issn0253-4320.2020.07.042. Search in Google Scholar

23. I.M. Mujtaba, W. Cao, and C. Beggs, ‘Theoretical approach of freeze seawater desalination on flake ice maker utilizing LNG cold energy’, Desalination, vol. 355, 2015, doi: 10.1016/j.desal.2014.09.034.10.1016/j.desal.2014.09.034 Search in Google Scholar

24. E.G. Cravalho, J.J. McGrath, and W.M. Toscano, ‘Thermodynamic analysis of the regasification of LNG for the desalination of sea water’, Cryogenics, vol. 17, no. 3, 1977, doi: 10.1016/0011-2275(77)90272-7.10.1016/0011-2275(77)90272-7 Search in Google Scholar

25. T. He, R. Zheng, J. Zheng, Y. Ju, et al., ‘LNG cold energy utilisation: prospects and challenges’, Energy, vol. 170, 2019, doi: 10.1016/j.energy.2018.12.170.10.1016/j.energy.2018.12.170 Search in Google Scholar

26. N. Yamanouchi, and H. Nagasawa, ‘Using LNG cold for air separation’, Chemical Engineering Progress, vol. 75, no. 7, 1979. Search in Google Scholar

27. Y. Wu, Y. Xiang, L. Cai, et al., ‘Optimization of a novel cryogenic air separation process based on cold energy recovery of LNG with exergoeconomic analysis’, Journal of Cleaner Production, vol. 275, 2020, doi: 10.1016/j.jclepro.2020.123027.10.1016/j.jclepro.2020.123027 Search in Google Scholar

28. M. Mehrpooya, B. Golestani, and S. Mousavian, ‘Novel cryogenic argon recovery from the air separation unit integrated with LNG regasification and CO2 transcritical power cycle’, Sustainable Energy Technologies and Assessments, vol. 40, no. 3, 2020, doi: 10.1016/j.seta.2020.100767.10.1016/j.seta.2020.100767 Search in Google Scholar

29. R. Zhang, C. Wu, W. Song, et al., ‘Energy integration of LNG light hydrocarbon recovery and air separation: Process design and technic-economic analysis’, Energy, vol. 207, 2020, doi: 10.1016/j.energy.2020.118328.10.1016/j.energy.2020.118328 Search in Google Scholar

30. Z. Gu, ‘The simulation and operation optimization of the C_2∼+ recovery process from LNG’, Petrochemical Industry Application, vol. 37, no. 4, 2018. Search in Google Scholar

31. T. Gao, W. Lin, and A. Gu, ‘Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilised’, Energy Conversion & Management, vol. 52, no. 6, 2011, doi: 10.1016/j.enconman.2010.12.040.10.1016/j.enconman.2010.12.040 Search in Google Scholar

32. T. Yamamoto, T. Furuhata, N. Arai, and K. Mori, ‘Design and testing of the Organic Rankine Cycle’, Energy, vol. 26, no. 3, 2001.10.1016/S0360-5442(00)00063-3 Search in Google Scholar

33. N.B. Desai and S. Bandyopadhyay, ‘Process integration of organic Rankine cycle’, Energy, vol. 34, no. 10, 2009, doi: 10.1016/j.energy.2009.04.037.10.1016/j.energy.2009.04.037 Search in Google Scholar

34. J. Koo, S.R. Oh, Y.U. Choi, et al., ‘Optimization of an Organic Rankine Cycle System for an LNG-Powered Ship’, Energies, doi: 10.3390/en12101933.10.3390/en12101933 Search in Google Scholar

35. Z. Tian, W. Zeng, B. Gu, et al., ‘Energy, exergy, and economic (3E) analysis of an organic Rankine cycle using zeotropic mixtures based on marine engine waste heat and LNG cold energy’, Energy Conversion and Management, vol. 228, 2020, doi: 10.1016/j.enconman.2020.113657.10.1016/j.enconman.2020.113657 Search in Google Scholar

36. X. Sun, S. Yao, J. Xu, et al., ‘Design and Optimization of a Full-Generation System for Marine LNG Cold Energy Cascade Utilisation’, Journal of Thermal Science, vol. 29, no. 3, 2020, doi: 10.1007/s11630-019-1161-1.10.1007/s11630-019-1161-1 Search in Google Scholar

37. L. Xu, and G. Lin, ‘LNG-FSRU new LNG cold energy power generation optimization plan’, Natural gas chemical industry (C1 chemistry and chemical engineering), vol. 45, no. 5, 2020. Search in Google Scholar

38. L. Zhao, J. Zhang, X. Wang, et al., ‘Dynamic exergy analysis of a novel LNG cold energy utilisation system combined with cold, heat and power’, Energy, vol. 212, 2020, doi: 10.1016/j.energy.2020.118649.10.1016/j.energy.2020.118649 Search in Google Scholar

39. I.A. Fernández, M.R. Gómez, J.R. Gómez, and L.M. López-González, ‘Generation of H2 on Board Lng Vessels for Consumption in the Propulsion System’, Polish Marit. Res., vol. 27, no. 1, 2020, doi: 10.2478/pomr-2020-0009.10.2478/pomr-2020-0009 Search in Google Scholar

eISSN:
2083-7429
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences