1. bookVolumen 29 (2022): Edición 2 (June 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2082-8799
Primera edición
16 May 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Effect of Aerobic Dance Vs Static Cycling on Anthropometric Measures, Cholesterol, and Blood Glucose in Type 2 Diabetes Mellitus: A Randomized Controlled Trial

Publicado en línea: 27 Jun 2022
Volumen & Edición: Volumen 29 (2022) - Edición 2 (June 2022)
Páginas: 18 - 23
Recibido: 21 Dec 2021
Aceptado: 08 Mar 2022
Detalles de la revista
License
Formato
Revista
eISSN
2082-8799
Primera edición
16 May 2011
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Introduction. Aerobic dance (AD) has grown as a popular aerobic exercise treating metabolic diseases. However, its beneficial effects on type 2 diabetes mellitus (T2DM) compared with other types of aerobic exercise have not been known. This study aimed to compare the influence of AD and static cycling (SC) on anthropometric measures, systolic blood pressure (SBP), blood glucose, and total cholesterol.

Material and Methods. The design of this study was a randomized controlled study (RCT). Thirty T2DM subjects were assigned to three groups, i.e. control (C), aerobic dance exercise (AD), and static cycling exercise (SC), ten subjects in each group. AD and SC were performed three times a week for eight weeks. On the follow-up, four subjects were withdrawn. Waist and hip circumference (WC and HC), BMI, and blood pressure (BP) were measured. Blood glucose (fasting (FBG) and 2 hours postprandial (2-h PPBG)) and total cholesterol were checked using a simple, instant blood examination device. A paired t-test, Anova and Tamhane’s T2 post hoc test were applied. Significance was set at p < 0.05.

Results. Student’s t-test showed that post-exercise waist circumference was significantly increased in the control group (92.7 ± 13.5 cm, p = 0.04), while post-exercise FBG and 2-h PPBG were significantly reduced in the SC group (112.5 ± 12.0 mg/dL, p = 0.04 and 155.0 ± 45.3 mg/dL, p = 0.02, respectively). Tamhane’s T2 post hoc indicates that 2-h PPBG in SC was lower than in the case of AD (155.0 ± 45.3 vs 171.3 ± 19.7 mg/dL, p = 0.04) and SC vs control (155.0 ± 45.3 vs 183.0 ± 24.1 mg/dL, p = 0.02). Systolic was significantly reduced in SC compared to the control group (126.9 ± 7.5 vs. 143.3 ± 17.5 mmHg, p = 0.04). The magnitude of reduced (Δ) in 2-h PPBG in SC was significantly different from control (Δ-18.75 ± 10.9 vs. Δ2.75 ± 12.4, p = 0.04) and AD (Δ-18.75 ± 10.9 vs. Δ6.37 ± 11.8, p = 0.02).

Conclusions. Static cycling exercise improved 2-hour postprandial blood glucose and systolic blood pressure significantly more than aerobic dance in T2DM.

Keywords

1. Boutayeb A. (2006). The double burden of communicable and non-communicable diseases in developing countries. Transactions of the Royal Society of Tropical Medicine and Hygiene 100(3), 191-199. DOI: 10.1016/j.trstmh.2005.07.02116274715 Abierto DOISearch in Google Scholar

2. Kaiser A.B., Zhang N., van der Pluijm W. (2018). The global prevalence of type 2 diabetes over the next ten years (2018-2028). Diabetes 67(suppl 1), 202-LB. DOI: 10.2337/db18-202-LB. Abierto DOISearch in Google Scholar

3. Zheng Y., Ley S.H., Hu F.B. (2018). Global etiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews. Endocrinology 14(2), 88-98. DOI: 10.1038/nrendo.2017.15129219149 Abierto DOISearch in Google Scholar

4. Ramachandran A., Snehalatha C., Ma R.C. (2014). Diabetes in South-East Asia: an update. Diabetes Research and Clinical Practice 103(2), 231-237. DOI: 10.1016/j.diabres.2013.11.01124300015 Abierto DOISearch in Google Scholar

5. Liu X., Yu S., Mao Z., Li Y., Zhang H., Yang K. et al. (2018). Dyslipidemia prevalence, awareness, treatment, control, and risk factors in Chinese rural population: the Henan rural cohort study. Lipids in Health and Disease 17, 119. DOI: 10.1186/s12944-018-0768-7.596490129788966 Abierto DOISearch in Google Scholar

6. Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M. et al. (2016). Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4), e38-e360. DOI: 10.1161/CIR.000000000000035026673558 Abierto DOISearch in Google Scholar

7. World Health Organization (2008). World Health Statistics 2008. Retrieved June 7, 2021 from www.who.int/gho/publications/world_health_statistics/EN_WHS08_Full.pdf. Search in Google Scholar

8. Galassi A., Reynolds K., He J. (2006). Metabolic syndrome and risk of cardiovascular disease: a meta-analysis. The American Journal of Medicine 119(10), 812-819. DOI: 10.1016/j.amjmed.2006.02.03117000207 Abierto DOISearch in Google Scholar

9. Nystoriak M.A., Bhatnagar A. (2018). Cardiovascular effects and benefits of exercise. Frontiers in Cardiovascular Medicine 5, 135. DOI: 10.3389/fcvm.2018.00135617229430324108 Abierto DOISearch in Google Scholar

10. Yan H., Prista A., Ranadive S.M., Damasceno A., Caupers P., Kanaley J.A., Fernhall V. (2014). Effect of aerobic training on glucose control and blood pressure in T2DDM East African males. ISRN Endocrinology Mar 4 2014, 864897. DOI: 10.1155/2014/864897.396072924729886 Abierto DOISearch in Google Scholar

11. Aggarwala J., Sharma S., Saroochi T., Jain A., Sarkar A. (2016). Effects of aerobic exercise on blood glucose levels and lipid profile in Diabetes Mellitus type 2 subjects. Al Ameen Journal of Medical Science 9(1), 65-69. Search in Google Scholar

12. Chen L., Pei J.H., Kuang J., Chen H.M., Chen Z., Li Z.W., Yang H.Z. (2015). Effect of lifestyle intervention in patients with type 2 diabetes: a meta-analysis. Metabolism 64(2), 338-347. DOI: 10.1016/j.metabol.2014.10.01825467842 Abierto DOISearch in Google Scholar

13. Sukla P., Shrivastava S.R., Shrivastava P.S. (2015). A longitudinal study to assess the impact of exercise on clinical, biochemical, and anthropometric parameters among the type 2 diabetes patients of South India. Avicenna Journal of Medicine 5(1), 16-20. DOI: 10.4103/2231-0770.148504429639225625085 Abierto DOISearch in Google Scholar

14. Milburn S., Butts N.K. (1983). A comparison of the training responses to aerobic dance and jogging in college females. Medicine & Science in Sports and Exercise 15(6), 510-513.10.1249/00005768-198315060-00012 Search in Google Scholar

15. Kin Isler A., Koşar S.N., Korkusuz F. (2001). Effects of step aerobics and aerobic dancing on serum lipids and lipoproteins. The Journal of Sports Medicine and Physical Fitness 41(3), 380-385. Search in Google Scholar

16. Lim J.U., Lee J.H., Kim J.S., Hwang Y.I., Kim T.H., Lim S.Y. et al. (2017). Comparison of World Health Organization and Asia-Pacific body mass index classifications in COPD patients. International Journal of Chronic Obstructive Pulmonary Disease 12, 2465-2475. DOI: 10.2147/COPD.S141295557188728860741 Abierto DOISearch in Google Scholar

17. World Health Organization (2021). Obesity and Over-weight. Geneva, Switzerland: WHO Press. Retrieved July 27, 2021 from https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight Search in Google Scholar

18. American College of Sports Medicine (2009). ACSM’s guidelines for exercise testing and prescription. Maryland, USA: Lippincott Williams & Wilkins. Baltimore. Search in Google Scholar

19. American Diabetes Association (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care 33(1), 62-69. DOI: 10.2337/dc10-S062279738320042775 Abierto DOISearch in Google Scholar

20. World Health Organization (2019). Classification of diabetes mellitus. Geneva, Switzerland. Retrieved July 27, 2021 from https://www.who.int/publications/i/item/classification-of-diabetes-mellitus. Search in Google Scholar

21. Cox R.A., García-Palmieri M.R. (1990). Cholesterol, triglycerides, and associated lipoproteins. In: H.K. Walker, W.D. Hall, J.W. Hurst (eds), Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworths. Search in Google Scholar

22. Williams L.D., Morton A.R. (1986). Changes in selected cardiorespiratory responses to exercise and in body composition following a 12-week aerobic dance program. Journal of Sports Science 4(3), 189-199. DOI: 10.1080/026404186087321183586112 Abierto DOISearch in Google Scholar

23. Dowdy D.B., Cureton K.J., Duval H.P., Ouzts H.G. (1985). Effects of aerobic dance on physical work capacity, cardiovascular function, and body composition of middle-aged women. Research Quarterly for Exercise and Sport 56(3), 227-233. DOI: 10.1080/02701367.1985.10605367 Abierto DOISearch in Google Scholar

24. Darby L.A., Browder K.D., Reeves B.D. (1995). The effects of cadence, impact and step on physiological responses to aerobic dance exercise. Research Quarterly for Exercise and Sport 66(3), 231-238. DOI: 10.1080/02701367.1995.106088377481084 Abierto DOISearch in Google Scholar

25. Ahmad M.F., Rosli M.A.A. (2015). Effects of aerobic dance on cardiovascular level and body weight among women. International Journal of Sport and Health Science 9(12), 874-882. Search in Google Scholar

26. Na Ayutthaya W.C., Kritpet T. (2015). Effects of low impact aerobic dance and fitball training on bone resorption and health-related physical fitness in Thai working women. Journal of The Medical Association of Thailand 98(8), 52-57. Search in Google Scholar

27. Kimura K., Hozumi N. (2012). Investigating the acute effect of an aerobic dance exercise program on neuro-cognitive function in the elderly. Psychology of Sport and Exercise 13, 623-629. DOI: 10.1016/j.psychsport.2012.04.001 Abierto DOISearch in Google Scholar

28. Kim S.H., Kim M., Ahn Y.B., Lim H.K., Kang S.G., Cho J.H. et al. (2011). Effect of dance exercise on cognitive function in elderly patients with metabolic syndrome: a pilot study. Journal of Sports Science and Medicine 10(4), 671-678. Search in Google Scholar

29. Williford H.N., Scharff-Olson M., Blessing D.L. (1989). The physiological effects of aerobic dance. A review. Sports Medicine 8(6), 335-345. DOI: 10.2165/00007256-198908060-000032694281 Abierto DOISearch in Google Scholar

30. Foster C. (1975). Physiological requirements of aerobic dancing. Research Quarterly 46(1), 120-122. DOI: 10.1080/10671315.1975.10615312 Abierto DOISearch in Google Scholar

31. Weber H. (1974). The energy cost of aerobic dancing. Fitness Living 8(2), 26-30. Search in Google Scholar

32. Gillett P.A., Eisenman P.A. (1987). The effect of intensity controlled aerobic dance exercise on aerobic capacity of middle-aged, overweight women. Research in Nursing and Health 10(6), 383-390. DOI: 10.1002/nur.47701006063423310 Abierto DOISearch in Google Scholar

33. Pelliccia A., Sharma S., Gati S., Bäck M., Börjesson M., Caselli S. et al. (2020). 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: The Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology. European Heart Journal 42(1), 17-96. DOI: 10.1093/eurheartj/ehaa60532860412 Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo