Acceso abierto

Dose calculation accuracy for photon small fields in treatment planning systems with comparison by Monte Carlo simulations


Cite

1. Behinaein S, Osei E, Darko J, et al. Evaluating small field dosimetry with the Acuros XB (AXB) and analytical anisotropic algorithm (AAA) dose calculation algorithms in the eclipse treatment planning system. J Radiother Pract. 2019:1-12. https://doi.org/10.1017/S146039691900010410.1017/S1460396919000104 Search in Google Scholar

2. Mesbahi A, Zergoug I. Dose calculations for lung inhomogeneity in high-energy photon beams and small beamlets: a comparison between XiO and TiGRT treatment planning systems and MCNPX Monte Carlo code. Iran J Med Phys. 2015;12(3):167-77. https://doi.org/10.22038/IJMP.2015.6218 Search in Google Scholar

3. Alfonso R, Andreo P, Capote R, et al. A new formalism for reference dosimetry of small and nonstandard fields. Med Phys. 2008;35(11):5179-86. https://doi.org/10.1118/1.300548110.1118/1.300548119070252 Search in Google Scholar

4. Park JC, Li JG, Arhjoul L, et al. Adaptive beamlet-based finite-size pencil beam dose calculation for independent verification of IMRT and VMAT. Med Phys. 2015;42(4):1836-1850. doi:10.1118/1.491485810.1118/1.491485825832074 Search in Google Scholar

5. Khan FM, Gibbons JP. Khan's the physics of radiation therapy: Lippincott Williams & Wilkins; 2014. Search in Google Scholar

6. Ojala JJ, Kapanen MK, Hyödynmaa SJ, et al. Performance of dose calculation algorithms from three generations in lung SBRT: comparison with full Monte Carlo-based dose distributions. J Appl Clin Med Phys. 2014;15(2):4-18. https://doi.org/10.1120/jacmp.v15i2.466210.1120/jacmp.v15i2.4662587546324710454 Search in Google Scholar

7. Lechner W, Wesolowska P, Azangwe G, et al. A multinational audit of small field output factors calculated by treatment planning systems used in radiotherapy. PhiRO. 2018;5:58-63. https://doi.org/10.1016/j.phro.2018.02.00510.1016/j.phro.2018.02.005780758633458370 Search in Google Scholar

8. Azangwe G, Grochowska P, Georg D, et al. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams. Med Phys. 2014;41(7):072103. https://doi.org/10.1118/1.488379510.1118/1.488379524989398 Search in Google Scholar

9. Das IJ, Ding GX, Ahnesjö A. Small fields: nonequilibrium radiation dosimetry. Med Phys. 2008;35(1):206-15. https://doi.org/10.1118/1.281535610.1118/1.281535618293576 Search in Google Scholar

10. Westermark M, Arndt J, Nilsson B, et al. Comparative dosimetry in narrow high-energy photon beams. Phys Med Biol. 2000;45(3):685. https://doi.org/10.1088/0031-9155/45/3/30810.1088/0031-9155/45/3/30810730964 Search in Google Scholar

11. Scott AJ, Nahum AE, Fenwick JD. Using a Monte Carlo model to predict dosimetric properties of small radiotherapy photon fields. Med Phys. 2008;35(10):4671-84. https://doi.org/10.1118/1.297522310.1118/1.297522318975713 Search in Google Scholar

12. Gholami S, Longo F, Nedaie HA, et al. Application of Geant4 Monte Carlo simulation in dose calculations for small radiosurgical fields. Med Dosim. 2018;43(3):214-223. https://doi.org/10.1016/j.meddos.2017.08.00710.1016/j.meddos.2017.08.00728988675 Search in Google Scholar

13. Partanen M, Ojala J, Niemelä J, et al. Comparison of two Monte Carlo-based codes for small-field dose calculations in external beam radiotherapy. Acta Oncol. 2017;56(6):891-3. https://doi.org/10.1080/0284186X.2017.129204810.1080/0284186X.2017.129204828464738 Search in Google Scholar

14. Cranmer-Sargison G. Small field dosimetry: experimental methods and monte carlo simulation in small field radiation therapy dosimetry [Ph.D. thesis]. University of Leeds (United Kingdom); 2014. Search in Google Scholar

15. Sterpin E, Tomsej M, De Smedt B, et al. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Med Phys. 2007;34(5):1665-77. https://doi.org/10.1118/1.272731410.1118/1.272731417555248 Search in Google Scholar

16. Mostaar A, Allahverdi M, Shahriari M. Application of MCNP4C Monte Carlo code in radiation dosimetry in heterogeneous phantom. Int J Radiat Res. 2003;1(3):143-149. Search in Google Scholar

17. Mesbahi A, Fix M, Allahverdi M, et al. Monte Carlo calculation of Varian 2300C/D Linac photon beam characteristics: a comparison between MCNP4C, GEANT3 and measurements. Appl Radiat Isotopes. 2005;62(3):469-77. https://doi.org/10.1016/j.apradiso.2004.07.00810.1016/j.apradiso.2004.07.00815607926 Search in Google Scholar

18. Gagné IM, Zavgorodni S. Evaluation of the analytical anisotropic algorithm in an extreme water–lung interface phantom using Monte Carlo dose calculations. J Appl Clin Med Phys. 2007;8(1):33-46. https://doi.org/10.1120/jacmp.v8i1.232410.1120/jacmp.v8i1.2324572240017592451 Search in Google Scholar

19. Elcim Y, Dirican B, Yavas O. Dosimetric comparison of pencil beam and Monte Carlo algorithms in conformal lung radiotherapy. J Appl Clin Med Phys. 2018;19(5):616-24. https://doi.org/10.1002/acm2.1242610.1002/acm2.12426612310630079474 Search in Google Scholar

20. Hoskin P. External Beam Therapy: Oxford University Press; 2019.10.1093/med/9780198786757.001.0001 Search in Google Scholar

21. Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107. https://doi.org/10.1088/0031-9155/48/21/R0110.1088/0031-9155/48/21/R01 Search in Google Scholar

22. Mesbahi A, Reilly AJ, Thwaites DI. Development and commissioning of a Monte Carlo photon beam model for Varian Clinac 2100EX linear accelerator. Appl Radiat Isotopes. 2006;64(6):656-62. https://doi.org/10.1016/j.apradiso.2005.12.01210.1016/j.apradiso.2005.12.01216455264 Search in Google Scholar

23. Jan S, Benoit D, Becheva E, et al. GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy. Phys Med Biol. 2011;56(4):881. https://doi.org/10.1088/0031-9155/56/4/00110.1088/0031-9155/56/4/00121248393 Search in Google Scholar

24. Sarrut D, Bardiès M, Boussion N, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41(6Part1). https://doi.org/10.1118/1.487161710.1118/1.487161724877844 Search in Google Scholar

25. Palta JR, Liu C, Li JG. Quality assurance of intensity-modulated radiation therapy. Int J Radiat Oncol. Biol. Phys.. 2008;71(1):S108-S12. https://doi.org/10.1016/j.ijrobp.2007.05.09210.1016/j.ijrobp.2007.05.09218406906 Search in Google Scholar

26. Benedict SH, Yenice KM, Followill D, et al. Stereotactic body radiation therapy: the report of AAPM Task Group 101. Med Phys. 2010;37(8):4078-101. https://doi.org/10.1118/1.343808110.1118/1.343808120879569 Search in Google Scholar

27. Fogliata A, Lobefalo F, Reggiori G, et al. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms. Med Phys. 2016;43(10):5685-94. https://doi.org/10.1118/1.496321910.1118/1.496321927782735 Search in Google Scholar

28. Fogliata A, Cozzi L. Dose calculation algorithm accuracy for small fields in non-homogeneous media: the lung SBRT case. Phys Medica. 2017;44:157-62. https://doi.org/10.1016/j.ejmp.2016.11.10410.1016/j.ejmp.2016.11.10427890568 Search in Google Scholar

29. Cranmer-Sargison G, Beckham W, Popescu I. Modelling an extreme water–lung interface using a single pencil beam algorithm and the Monte Carlo method. Phys Med Biol. 2004;49(8):1557. https://doi.org/10.1088/0031-9155/49/8/01310.1088/0031-9155/49/8/01315152692 Search in Google Scholar

30. Krieger T, Sauer OA. Monte Carlo-versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom. Phys Med Biol. 2005;50(5):859. https://doi.org/10.1088/0031-9155/50/5/01010.1088/0031-9155/50/5/01015798260 Search in Google Scholar

31. Fogliata A, Nicolini G, Clivio A, et al. Accuracy of Acuros XB and AAA dose calculation for small fields with reference to RapidArc® stereotactic treatments. Med Phys. 2011;38(11):6228-37. https://doi.org/10.1118/1.365473910.1118/1.365473922047388 Search in Google Scholar

32. Huang B, Wu L, Lin P, et al. Dose calculation of Acuros XB and Anisotropic Analytical Algorithm in lung stereotactic body radiotherapy treatment with flattening filter free beams and the potential role of calculation grid size. Radiat Oncol. 2015;10(1):53. https://doi.org/10.1186/s13014-015-0357-010.1186/s13014-015-0357-0435366425886628 Search in Google Scholar

33. Fogliata A, Nicolini G, Clivio A, et al. Dosimetric evaluation of Acuros XB Advanced Dose Calculation algorithm in heterogeneous media. Radiat Oncol. 2011;6(1):82. https://doi.org/10.1186/1748-717X-6-8210.1186/1748-717X-6-82316841121771317 Search in Google Scholar

34. Pelowitz DB. MCNPX user’s manual version 2.5. 0. Los Alamos National Laboratory. 2005;76:473. Search in Google Scholar

35. Mesbahi A. Dosimetric characteristics of unflattened 6 MV photon beams of a clinical linear accelerator: a Monte Carlo study. Appl Radiat Isotopes. 2007;65(9):1029-36. https://doi.org/10.1016/j.apradiso.2007.04.02310.1016/j.apradiso.2007.04.02317616465 Search in Google Scholar

36. Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother Oncol. 2001;60(2):191-201. https://doi.org/10.1016/S0167-8140(01)00377-210.1016/S0167-8140(01)00377-2 Search in Google Scholar

37. Calvo OI, Gutiérrez AN, Stathakis S, et al. On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT. J Appl Clin Med Phys. 2012;13(3):43-59. https://doi.org/10.1120/jacmp.v13i3.375110.1120/jacmp.v13i3.3751571656022584174 Search in Google Scholar

38. Carrasco P, Jornet N, Duch MA, et al. Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium: dose calculation algorithms in lung heterogeneities. Med Phys. 2004;31(10):2899-911. https://doi.org/10.1118/1.178893210.1118/1.178893215543799 Search in Google Scholar

39. Fotina I, Kragl G, Kroupa B, et al. Clinical comparison of dose calculation using the enhanced collapsed cone algorithm vs. a new Monte Carlo algorithm. Strahlenther Onkol. 2011;187(7):433-41. https://doi.org/10.1007/s00066-011-2215-910.1007/s00066-011-2215-921713394 Search in Google Scholar

40. Chopra KL, Leo P, Kabat C, et al. Evaluation of dose calculation accuracy of treatment planning systems in the presence of tissue heterogeneities. Ther Radiol Oncol. 2018;2:420-7. https://doi.org/10.21037/tro.2018.07.0110.21037/tro.2018.07.01 Search in Google Scholar

41. Stathakis S, Esquivel C, Quino LV, et al. Accuracy of the small field dosimetry using the Acuros XB dose calculation algorithm within and beyond heterogeneous media for 6 MV photon beams. Int J Med Phys Clin Eng Radiat Oncol. 2012; 1: 78–87. https://doi.org/10.4236/ijmpcero.2012.1301110.4236/ijmpcero.2012.13011 Search in Google Scholar

42. Najafzadeh M, Nickfarjam A, Jabbari K, et al. Dosimetric verification of lung phantom calculated by collapsed cone convolution: A Monte Carlo and experimental evaluation. J X-Ray Sci Technol. 2019;27(1):161-75. https://doi.org/10.3233/XST-18042510.3233/XST-18042530614811 Search in Google Scholar

43. Caccia B, Andenna C, Iaccarino G, et al. Monte Carlo as a tool to evaluate the effect of different lung densities on radiotherapy dose distribution. Radiat Prot Dosim. 2014;162(1-2):115-9. https://doi.org/10.1093/rpd/ncu24110.1093/rpd/ncu24125452329 Search in Google Scholar

44. Palmans H, Andreo P, Huq MS, et al. Dosimetry of small static fields used in external photon beam radiotherapy: Summary of TRS-483, the IAEA-AAPM international Code of Practice for reference and relative dose determination. Med Phys. 2018;45(11):e1123-e45. https://doi.org/10.1002/mp.1320810.1002/mp.1320830247757 Search in Google Scholar

eISSN:
1898-0309
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics