1. bookVolumen 25 (2023): Edición 1 (March 2023)
Detalles de la revista
License
Formato
Revista
eISSN
1899-4741
Primera edición
03 Jul 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Encapsulation of hydroxycitronellal in β-cyclodextrin and the characteristics of the inclusion complex

Publicado en línea: 29 Mar 2023
Volumen & Edición: Volumen 25 (2023) - Edición 1 (March 2023)
Páginas: 20 - 27
Detalles de la revista
License
Formato
Revista
eISSN
1899-4741
Primera edición
03 Jul 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

Surburg, H. & Panten, J. (2006). Common Fragrance and Flavor Materials. Weinheim, Wiley-Vch Verlag GmbH & Co. KGaA. Search in Google Scholar

Burdock, G.A. (2010). Fenarolis handbook of flavor ingredients. Boca Raton, CRC Press. Search in Google Scholar

Andrade, J.C., Monteiro, Á.B., Andrade, H.H.N., Gonzaga, T.K.S.N., Silva, P.R., Alves, D.N., Castro, R.D., Maia, M.S., Scotti, M.T., Sousa, D.P. & Almeida, Reinaldo N. (2021). Involvement of GABAA receptors in the anxiolytic-like effect of hydroxycitronellal. BioMed Res. Int. Article ID 9929805. DOI: 10.1155/2021/9929805 Abierto DOISearch in Google Scholar

Teixeira, M.A., Rodríguez, O., Gomes, P., Mata, V. & Rodrigues, A.E. (2013). Perfume Engineering: Design, Performance & Classification, New York, Elsevier Ltd. Search in Google Scholar

Zhou, M. & Liu, J. (2000). Study on the permeability of cinnamic aldehyde and hydroxycitronellal in vitro. Chinese J. Health Labor. Technol., 10(2), 135–137. DOI: CNKI:SUN:ZWJZ.0.2000-02-003. Abierto DOISearch in Google Scholar

Liu S. (2000). Technological Manuals of Synthetic Aroma Chemical, Beijing, China Light Industry Press Ltd. Search in Google Scholar

Heydorn, S., Andersen, K.E., Johansen, J.D. & Menné, T. (2003). A stronger patch test elicitation reaction to the allergen hydroxycitronellal plus the irritant sodium lauryl sulfate. Contact Dermatitis 49, 133–139. DOI: 10.1111/j.0105-1873.2003.00175.x. Abierto DOISearch in Google Scholar

Calnan, C.D. (1979). Unusual hydroxycitronellal perfume dermatitis. Contact Dermatitis 5(2), 123–123. DOI: 10.1111/j.1600-0536.1979.tb04816.x. Abierto DOISearch in Google Scholar

Steltenkamp, R.J., Booman, K.A., Dorsky, J., King, T.O., Rothenstein, A.S., Schwoeppe, E.A., Sedlak, R.I., Smith T.H.F. & Thompson, G.R. (1980). Hydroxycitronellal: a survey of consumer patch-test sensitization. Food Cosm. Toxicol. 18, 407–412. DOI: 10.1016/0015-6264(80)90198-4. Abierto DOISearch in Google Scholar

Ford, R.A., Api, A.M. & Suskind, R.R. (1988). Allergic contact sensitization potential of hydroxycitronellal in humans. Food Chem. Toxicol. 26, 921–926. DOI: 10.1016/0278-6915(88)90090-7. Abierto DOISearch in Google Scholar

Liu, X., Wu, J., Wang, M. & Zhang, M. (2021). Research progress of cometic delivery system: application of pharmaceutical new dosage forms and new techniques in cosmetics. Flavour Frag. Cosmetics, 6, 99–105. (in Chnises). Search in Google Scholar

Amann, M. & Dressnandt, G. (1993). Solving problems with cyclodextrins in cosmetics. Cosmetics and Toiletries, 108, 90–95. Search in Google Scholar

Chen, N., Zhang, H. & Li, L. (2022). The carrier structure of retinol and retinol derivatives and its application in cosmetics. Chem. World 63(1), 51–56. (in Chinese). DOI: 10.19500/j. cnki.0367-6358.20200814. Abierto DOISearch in Google Scholar

Celebioglu, A., Yildiz, Z.I. & Uyar, T. (2018). Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int. 106, 280–290. DOI: 10.1016/j. foodres.2017.12.062. Abierto DOISearch in Google Scholar

Kibici, D. & Kahveci, D. (2019). Effect of emulsifier type, maltodextrin, and β-cyclodextrin on physical and oxidative stability of oil-in-water emulsions. J. Food Sci. 84(6), 1273–1280. DOI: 10.1111/1750-3841.14619. Abierto DOISearch in Google Scholar

Perinelli, D.R., Palmieri, G.F., Cespi, M. & Bonacucina, G. (2020). Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 25, 5878. DOI: 10.3390/molecules25245878. Abierto DOISearch in Google Scholar

Kayaci, F., Sen, H.S., Durgun, E. & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int. 62, 424–431. DOI: 10.1016/j.foodres.2014.03.033. Abierto DOISearch in Google Scholar

Siva, S., Li, C., Cui, H. & Lin, L. (2019). Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication: Characterization, antioxidant and antibacterial activities. J. Mol. Liq. 296, 111777. DOI: 10.1016/j.molliq.2019.111777 Abierto DOISearch in Google Scholar

Real, D., Leonardi, D., WilliamsIII, R.O., Repka, M.A. & Salomon, C.J. (2018). Solving the Delivery Problems of Triclabendazole Using Cyclodextrins. AAPS PharmSciTech 19, 2311–2321. DOI: 10.1208/s12249-018-1057-5. Abierto DOISearch in Google Scholar

Zhu, G., Jiang, X., Zhu, G. & Xiao, Z. (2020). Encapsulation of difurfuryl disulfde in β-cyclodextrin and release characteristics of the guest from its inclusion complex. J. Incl. Phenom. Macro. Chem. 96, 263–273. DOI: 10.1007/s10847-019-00967-x. Abierto DOISearch in Google Scholar

Zhu, G., Zhu, G. & Xiao, Z. (2021). Study of formation constant, thermodynamics and β-ionone release characteristic of β-ionone-hydroxypropyl-β-cyclodextrin inclusion complex. Polym. Bull. 78, 247–260. DOI: 10.1007/s00289-020-03108-4. Abierto DOISearch in Google Scholar

Zhu, G., Xiao, Z., Yu, G., Zhu, G., Niu, Y. & Liu, J. (2021). Formation and characterization of furfuryl mercaptan-β-cyclodextrin inclusion complex and its thermal release characteristics. Pol. J. Chem. Technol. 23(4), 35–40. DOI: 10.2478/pjct-2021-0035. Abierto DOISearch in Google Scholar

Zhu, G., Xiao, Z. & Zhu, G. (2021). Fabrication and characterization of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex. J. Food Sci. 86, 3589–3597. DOI: 10.1111/1750-3841.15835. Abierto DOISearch in Google Scholar

Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M. & Takaha, T. (1998). Structures of the common cyclodextrins and their larger analoguess beyond the doughnut. Chem. Rev. 98, 1787–1802. DOI: 10.1021/cr9700181. Abierto DOISearch in Google Scholar

He, Y., Fu, P., Shen, X. & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron 39, 495–516. DOI: 10.1016/j.micron.2007.06.017. Abierto DOISearch in Google Scholar

Stuart, B. (1996). Modern Infrared Spectroscopy. New York, John Wiley & Sons27.Ning, Y. (2010). Spectroscopy in Organic Chemistry and Spectral Analysis. Beijing, China Science Publishing & Media Ltd. Search in Google Scholar

Ning, Y. (2010). Spectroscopy in Organic Chemistry and Spectral Analysis. Beijing, China Science Publishing & Media Ltd. Search in Google Scholar

Zhu, G., Zhu, G. & Xiao, Z. (2019). A review of the production of slowrelease favor by formation inclusion complex with cyclodextrins and their derivatives. J. Incl. Phenom. Macro. Chem. 95, 17–33. DOI: 10.1007/s10847-019-00929-3. Abierto DOISearch in Google Scholar

Zhu, G., Jin, Y., Xiao, Z. & Zhu, G. (2022). Preparation and characterization of the dimethyl sulfide-β-cyclodextrin inclusion complex. J. Food Sci. 87, 3084–3094. DOI: 10.1111/1750-3841.16216. Abierto DOISearch in Google Scholar

Zhu, G., Xiao, Z., Zhou, R., Liu, J., Zhu, G. & Zheng X. (2022). (-)-Menthol-β-cyclodextrin inclusion complex production and characterization. Pol. J. Chem. Technol. 24(2), 1–7. DOI: 10.2478/pjct-2022-0008. Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD