Surburg, H. & Panten, J. (2006). Common Fragrance and Flavor Materials. Weinheim, Wiley-Vch Verlag GmbH & Co. KGaA.Search in Google Scholar
Burdock, G.A. (2010). Fenaroli’s handbook of flavor ingredients. Boca Raton, CRC Press.Search in Google Scholar
Andrade, J.C., Monteiro, Á.B., Andrade, H.H.N., Gonzaga, T.K.S.N., Silva, P.R., Alves, D.N., Castro, R.D., Maia, M.S., Scotti, M.T., Sousa, D.P. & Almeida, Reinaldo N. (2021). Involvement of GABAA receptors in the anxiolytic-like effect of hydroxycitronellal. BioMed Res. Int. Article ID 9929805. DOI: 10.1155/2021/9929805Open DOISearch in Google Scholar
Teixeira, M.A., Rodríguez, O., Gomes, P., Mata, V. & Rodrigues, A.E. (2013). Perfume Engineering: Design, Performance & Classification, New York, Elsevier Ltd.Search in Google Scholar
Zhou, M. & Liu, J. (2000). Study on the permeability of cinnamic aldehyde and hydroxycitronellal in vitro. Chinese J. Health Labor. Technol., 10(2), 135–137. DOI: CNKI:SUN:ZWJZ.0.2000-02-003.Open DOISearch in Google Scholar
Liu S. (2000). Technological Manuals of Synthetic Aroma Chemical, Beijing, China Light Industry Press Ltd.Search in Google Scholar
Heydorn, S., Andersen, K.E., Johansen, J.D. & Menné, T. (2003). A stronger patch test elicitation reaction to the allergen hydroxycitronellal plus the irritant sodium lauryl sulfate. Contact Dermatitis 49, 133–139. DOI: 10.1111/j.0105-1873.2003.00175.x.Open DOISearch in Google Scholar
Calnan, C.D. (1979). Unusual hydroxycitronellal perfume dermatitis. Contact Dermatitis 5(2), 123–123. DOI: 10.1111/j.1600-0536.1979.tb04816.x.Open DOISearch in Google Scholar
Steltenkamp, R.J., Booman, K.A., Dorsky, J., King, T.O., Rothenstein, A.S., Schwoeppe, E.A., Sedlak, R.I., Smith T.H.F. & Thompson, G.R. (1980). Hydroxycitronellal: a survey of consumer patch-test sensitization. Food Cosm. Toxicol. 18, 407–412. DOI: 10.1016/0015-6264(80)90198-4.Open DOISearch in Google Scholar
Ford, R.A., Api, A.M. & Suskind, R.R. (1988). Allergic contact sensitization potential of hydroxycitronellal in humans. Food Chem. Toxicol. 26, 921–926. DOI: 10.1016/0278-6915(88)90090-7.Open DOISearch in Google Scholar
Liu, X., Wu, J., Wang, M. & Zhang, M. (2021). Research progress of cometic delivery system: application of pharmaceutical new dosage forms and new techniques in cosmetics. Flavour Frag. Cosmetics, 6, 99–105. (in Chnises).Search in Google Scholar
Amann, M. & Dressnandt, G. (1993). Solving problems with cyclodextrins in cosmetics. Cosmetics and Toiletries, 108, 90–95.Search in Google Scholar
Chen, N., Zhang, H. & Li, L. (2022). The carrier structure of retinol and retinol derivatives and its application in cosmetics. Chem. World 63(1), 51–56. (in Chinese). DOI: 10.19500/j. cnki.0367-6358.20200814.Open DOISearch in Google Scholar
Celebioglu, A., Yildiz, Z.I. & Uyar, T. (2018). Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res. Int. 106, 280–290. DOI: 10.1016/j. foodres.2017.12.062.Open DOISearch in Google Scholar
Kibici, D. & Kahveci, D. (2019). Effect of emulsifier type, maltodextrin, and β-cyclodextrin on physical and oxidative stability of oil-in-water emulsions. J. Food Sci. 84(6), 1273–1280. DOI: 10.1111/1750-3841.14619.Open DOISearch in Google Scholar
Perinelli, D.R., Palmieri, G.F., Cespi, M. & Bonacucina, G. (2020). Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update. Molecules 25, 5878. DOI: 10.3390/molecules25245878.Open DOISearch in Google Scholar
Kayaci, F., Sen, H.S., Durgun, E. & Uyar, T. (2014). Functional electrospun polymeric nanofibers incorporating geraniol–cyclodextrin inclusion complexes: High thermal stability and enhanced durability of geraniol. Food Res. Int. 62, 424–431. DOI: 10.1016/j.foodres.2014.03.033.Open DOISearch in Google Scholar
Siva, S., Li, C., Cui, H. & Lin, L. (2019). Encompassment of isoeugenol in 2-hydroxypropyl-β-cyclodextrin using ultrasonication: Characterization, antioxidant and antibacterial activities. J. Mol. Liq. 296, 111777. DOI: 10.1016/j.molliq.2019.111777Open DOISearch in Google Scholar
Real, D., Leonardi, D., WilliamsIII, R.O., Repka, M.A. & Salomon, C.J. (2018). Solving the Delivery Problems of Triclabendazole Using Cyclodextrins. AAPS PharmSciTech 19, 2311–2321. DOI: 10.1208/s12249-018-1057-5.Open DOISearch in Google Scholar
Zhu, G., Jiang, X., Zhu, G. & Xiao, Z. (2020). Encapsulation of difurfuryl disulfde in β-cyclodextrin and release characteristics of the guest from its inclusion complex. J. Incl. Phenom. Macro. Chem. 96, 263–273. DOI: 10.1007/s10847-019-00967-x.Open DOISearch in Google Scholar
Zhu, G., Zhu, G. & Xiao, Z. (2021). Study of formation constant, thermodynamics and β-ionone release characteristic of β-ionone-hydroxypropyl-β-cyclodextrin inclusion complex. Polym. Bull. 78, 247–260. DOI: 10.1007/s00289-020-03108-4.Open DOISearch in Google Scholar
Zhu, G., Xiao, Z., Yu, G., Zhu, G., Niu, Y. & Liu, J. (2021). Formation and characterization of furfuryl mercaptan-β-cyclodextrin inclusion complex and its thermal release characteristics. Pol. J. Chem. Technol. 23(4), 35–40. DOI: 10.2478/pjct-2021-0035.Open DOISearch in Google Scholar
Zhu, G., Xiao, Z. & Zhu, G. (2021). Fabrication and characterization of ethyl acetate-hydroxypropyl-β-cyclodextrin inclusion complex. J. Food Sci. 86, 3589–3597. DOI: 10.1111/1750-3841.15835.Open DOISearch in Google Scholar
Saenger, W., Jacob, J., Gessler, K., Steiner, T., Hoffmann, D., Sanbe, H., Koizumi, K., Smith, S.M. & Takaha, T. (1998). Structures of the common cyclodextrins and their larger analoguess beyond the doughnut. Chem. Rev. 98, 1787–1802. DOI: 10.1021/cr9700181.Open DOISearch in Google Scholar
He, Y., Fu, P., Shen, X. & Gao, H. (2008). Cyclodextrin-based aggregates and characterization by microscopy. Micron 39, 495–516. DOI: 10.1016/j.micron.2007.06.017.Open DOISearch in Google Scholar
Stuart, B. (1996). Modern Infrared Spectroscopy. New York, John Wiley & Sons27.Ning, Y. (2010). Spectroscopy in Organic Chemistry and Spectral Analysis. Beijing, China Science Publishing & Media Ltd.Search in Google Scholar
Ning, Y. (2010). Spectroscopy in Organic Chemistry and Spectral Analysis. Beijing, China Science Publishing & Media Ltd.Search in Google Scholar
Zhu, G., Zhu, G. & Xiao, Z. (2019). A review of the production of slowrelease favor by formation inclusion complex with cyclodextrins and their derivatives. J. Incl. Phenom. Macro. Chem. 95, 17–33. DOI: 10.1007/s10847-019-00929-3.Open DOISearch in Google Scholar
Zhu, G., Jin, Y., Xiao, Z. & Zhu, G. (2022). Preparation and characterization of the dimethyl sulfide-β-cyclodextrin inclusion complex. J. Food Sci. 87, 3084–3094. DOI: 10.1111/1750-3841.16216.Open DOISearch in Google Scholar
Zhu, G., Xiao, Z., Zhou, R., Liu, J., Zhu, G. & Zheng X. (2022). (-)-Menthol-β-cyclodextrin inclusion complex production and characterization. Pol. J. Chem. Technol. 24(2), 1–7. DOI: 10.2478/pjct-2022-0008.Open DOISearch in Google Scholar