Cite

Aiello, O., Crovetti, P. S. and Fiori, F. (2015). Susceptibility to EMI of a Battery Management System IC for Electric Vehicles. In: 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC). Presented at the 2015 IEEE International Symposium on Electromagnetic Compatibility -EMC 2015, IEEE, Dresden, Germany, pp. 749–754. doi: 10.1109/ISEMC.2015.7256257.10.1109/ISEMC.2015.7256257 Search in Google Scholar

Albatayneh, A., Assaf, M. N., Alterman, D. and Jaradat, M. (2020). Comparison of the Overall Energy Efficiency for Internal Combustion Engine Vehicles and Electric Vehicles. Environmental and Climate Technologies, 24, pp. 669–680. doi: 10.2478/rtuect-2020-0041.10.2478/rtuect-2020-0041 Search in Google Scholar

Amanor-Boadu, J. M., Guiseppi-Elie, A. and Sánchez-Sinencio, E. (2018a). The Impact of Pulse Charging Parameters on the Life Cycle of Lithium-Ion Polymer Batteries. Energies, 11(8), p. 2162. doi: 10.3390/en11082162.10.3390/en11082162 Search in Google Scholar

Amanor-Boadu, J. M., Guiseppi-Elie, A. and Sanchez-Sinencio, E. (2018b). Search for Optimal Pulse Charging Parameters for Li-Ion Polymer Batteries Using Taguchi Orthogonal Arrays. IEEE Transactions on Industrial Electronics, 65(11), pp. 8982–8992. doi: 10.1109/TIE.2018.2807419.10.1109/TIE.2018.2807419 Search in Google Scholar

Arrhenius, S. A. (1889). Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für Physikalische Chemie, 4, p. 226. doi: 10.1515/zpch-1889-0116.10.1515/zpch-1889-0116 Search in Google Scholar

Barai, A., Uddin, K., Widanage, W. D., McGordon, A. and Jennings, P. (2018). A Study of the Influence of Measurement Timescale on Internal Resistance Characterisation Methodologies for Lithium-ion Cells. Scientific Reports, 8(1), p. 21. doi: 10.1038/s41598-017-18424-5.10.1038/s41598-017-18424-5575878629311666 Search in Google Scholar

Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F. and Riu, D. (2013). A Review on Lithiumion Battery Ageing Mechanisms and Estimations for Automotive Applications. Journal of Power Sources, 241, pp. 680–689. doi: 10.1016/j.jpowsour.2013.05.040.10.1016/j.jpowsour.2013.05.040 Search in Google Scholar

Bilansky, J. and Lacko, M. (2020). Design and Simulation of Cyclic Battery Tester. Power Electronics and Drives, 5, pp. 229–241. doi: 10.2478/pead-2020-0017.10.2478/pead-2020-0017 Search in Google Scholar

BU-502: Discharging at High and Low Temperatures [WWW Document]. (2010). Battery Univ. Available at: https://batteryuniversity.com/article/bu-502-discharging-at-high-and-low-temperatures [Accessed 10 Dec. 2021]. Search in Google Scholar

Burkert, A., Fechtner, H. and Schmuelling, B. (2021). Interdisciplinary Analysis of Social Acceptance Regarding Electric Vehicles with a Focus on Charging Infrastructure and Driving Range in Germany. World Electric Vehicle Journal, 12(1), p. 25. doi: 10.3390/wevj12010025.10.3390/wevj12010025 Search in Google Scholar

Cao, J., Schofield, N. and Emadi, A. (2008). Battery Balancing Methods: A Comprehensive Review. In: 2008 IEEE Vehicle Power and Propulsion Conference. Presented at the 2008 IEEE Vehicle Power and Propulsion Conference, pp. 1–6. doi: 10.1109/VPPC.2008.4677669.10.1109/VPPC.2008.4677669 Search in Google Scholar

Daowd, M., Omar, N., Van Den Bossche, P. and Van Mierlo, J. (2011). Passive and Active Battery Balancing Comparison Based on MATLAB Simulation. In: 2011 IEEE Vehicle Power and Propulsion Conference. Presented at the 2011 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, Chicago, IL, USA, pp. 1–7. doi: 10.1109/VPPC.2011.6043010.10.1109/VPPC.2011.6043010 Search in Google Scholar

de Hoog, J., Jaguemont, J., Abdel-Monem, M., Van Den Bossche, P., Van Mierlo, J. and Omar, N. (2018). Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging. Energies, 11(4), p. 804. doi: 10.3390/en11040804.10.3390/en11040804 Search in Google Scholar

Duan, J., Tang, X., Dai, H., Yang, Y., Wu, W., Wei, X. and Huang, Y. (2020). Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review. Electrochemical Energy Reviews, 3, pp. 1–42. doi: 10.1007/s41918-019-00060-4.10.1007/s41918-019-00060-4 Search in Google Scholar

Fechtner, H., Saes, K. H., Fechtner, E., Braun, T. and Schmülling, B. (2016). Clarification of the Training Requirements for Working on Electric Vehicles. International Journal of Advanced Corporate Learning, 9(1), p. 35. doi: 10.3991/ijac.v9i1.5635.10.3991/ijac.v9i1.5635 Search in Google Scholar

Gabbar, H. A., Othman, A. M. and Abdussami, M. R. (2021). Review of Battery Management Systems (BMS) Development and Industrial Standards. Technologies, 9(2), p. 28. doi: 10.3390/technologies9020028.10.3390/technologies9020028 Search in Google Scholar

Gallardo-Lozano, J., Romero-Cadaval, E., Milanes-Montero, M. I. and Guerrero-Martinez, M. A. (2014). Battery Equalization Active Methods. Journal of Power Sources, 246, pp. 934–949. doi: 10.1016/j.jpowsour.2013.08.026.10.1016/j.jpowsour.2013.08.026 Search in Google Scholar

Gao, Y., Jiang, J., Zhang, C., Zhang, W., Ma, Z. and Jiang, Y. (2017). Lithium-Ion Battery Aging Mechanisms and Life Model Under Different Charging Stresses. Journal of Power Sources, 356, pp. 103–114. doi: 10.1016/j.jpowsour.2017.04.084.10.1016/j.jpowsour.2017.04.084 Search in Google Scholar

Guenther, L. H., Scholz, T., Pautzke, F., Fechtner, H., Schmuelling, B., Schelte, N., Severengiz, S., Hinz, M. and Bracke, S. (2021). Reliability Engineering of Electric Vehicle Powertrains: Data Collection and Analysis Based on Products in the Usage Phase. In: Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021). Presented at the Proceedings of the 31st European Safety and Reliability Conference. Research Publishing Services, pp. 2573–2580. doi: 10.3850/978-981-18-2016-8_183-cd.10.3850/978-981-18-2016-8_183-cd Search in Google Scholar

Guo, Z., Liaw, B. Y., Qiu, X., Gao, L. and Zhang, C. (2015). Optimal Charging Method for Lithium Ion Batteries Using a Universal Voltage Protocol Accommodating Aging. Journal of Power Sources, 274, pp. 957–964. doi: 10.1016/j.jpowsour.2014.10.185.10.1016/j.jpowsour.2014.10.185 Search in Google Scholar

Hellwig, M., Scholz, T., Pautzke, F. and Tendyra, P. (2020). Das Vernetze Prüflabor NetLab. In: H. Proff, ed., Neue Dimensionen der Mobilität. Springer Fachmedien Wiesbaden, Wiesbaden, pp. 707–715. doi: 10.1007/978-3-658-29746-6_56.10.1007/978-3-658-29746-6_56 Search in Google Scholar

Hermann, P., Zhang, C., Kremzow-Tennie, S. and Parzyszek, D. (2019). Das Forschungsprojekt D-See [diːˌsiː] – Durchgängiges Schnellladekonzept für Elektrofahrzeuge 17. Search in Google Scholar

Hossain Ahmed, S., Kang, X. and Bade Shrestha, S. O. (2015). Effects of Temperature on Internal Resistances of Lithium-Ion Batteries. Journal of Energy Resources Technology, 137(3), p. 031901. doi: 10.1115/1.4028698.10.1115/1.4028698 Search in Google Scholar

Hu, Y., Iwata, G. Z., Mohammadi, M., Silletta, E. V., Wickenbrock, A., Blanchard, J. W., Budker, D. and Jerschow, A. (2020). Sensitive Magnetometry Reveals Inhomogeneities in Charge Storage and Weak Transient Internal Currents in Li-Ion Cells. Proceedeings of the National Academy of Sciences, 117(20), pp. 10667–10672. doi: 10.1073/pnas.1917172117.10.1073/pnas.1917172117724512232376633 Search in Google Scholar

Iora, P. and Tribioli, L. (2019). Effect of Ambient Temperature on Electric Vehicles’ Energy Consumption and Range: Model Definition and Sensitivity Analysis Based on Nissan Leaf Data. World Electric Vehicle Journal, 10(1), p. 2. doi: 10.3390/wevj10010002.10.3390/wevj10010002 Search in Google Scholar

ISO 12405-4. (2018). ISO 12405-4 Electrically Propelled Road Vehicles - Test Specification for Lithium-Ion Traction Battery Packs and Systems - Part 4: Performance Testing. Geneva, Switzerland. Search in Google Scholar

Jochem, P., Szimba, E. and Reuter-Oppermann, M. (2019). How Many Fast-Charging Stations do we need along European Highways? Transportation Research Part D: Transport and Environment, 73, pp. 120–129. doi: 10.1016/j.trd.2019.06.005.10.1016/j.trd.2019.06.005 Search in Google Scholar

Jossen, A., Späth, V., Döring, H. and Garche, J. (1999). Reliable Battery Operation — A Challenge for the Battery Management System. Journal of Power Sources, 84(2), pp. 283–286. doi: 10.1016/S0378-7753(99)00329-8.10.1016/S0378-7753(99)00329-8 Search in Google Scholar

Juarez-Robles, D., Vyas, A. A., Fear, C., Jeevarajan, J. A. and Mukherjee, P. P. (2020a). Overcharge and Aging Analytics of Li-Ion Cells. Journal of the Electrochemical Society, 167(9), p. 090547. doi: 10.1149/1945-7111/ab9569.10.1149/1945-7111/ab9569 Search in Google Scholar

Juarez-Robles, D., Vyas, A. A., Fear, C., Jeevarajan, J. A. and Mukherjee, P. P. (2020b). Overdischarge and Aging Analytics of Li-Ion Cells. Journal of the Electrochemical Society, 167(9), p. 090558. doi: 10.1149/1945-7111/aba00a.10.1149/1945-7111/aba00a Search in Google Scholar

Kalla, P., Bakhtiarian, N., Grimm, D., Scholz, T., Grafe, D., Peric, S., Bauer, J., Teermann, A. and Pautzke, F. (2021). Energy Management in Metropolitan Emobility Charging Infrastructures EMEL. In: H. Proff, ed., Transforming Mobility What Next? Search in Google Scholar

Keil, P. and Jossen, A. (2016). Charging Protocols for Lithium-Ion Batteries and their Impact on Cycle Life—An Experimental Study With Different 18650 High-Power Cells. Journal of Energy Storage, 6, pp. 125–141.10.1016/j.est.2016.02.005 Search in Google Scholar

Keysight. (2021). SL113XA/SL100XA Series Scienlab Battery Test System – Cell Level. [WWW Document]. Keysight. Available at: https://www.keysight.com/de/de/products/hev-ev-grid-emulators-and-test-systems/scienlab-battery-test-systems/sl1133a-sl100xa-series-scienlab-battery-test-system-cell-level.html [Accessed 13 Dec. 2021]. Search in Google Scholar

Khan, A. B., Pharm, V. L., Nguyen, T. T. and Choi, W. (2016). Multistage Constant-Current Charging Method for Li-Ion Batteries. In: 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), pp. 381–385.10.1109/ITEC-AP.2016.7512982 Search in Google Scholar

Kim, U. S., Yi, J., Shin, C. B., Han, T. and Park, S. (2011). Modelling the Thermal Behaviour of a Lithium-Ion Battery During Charge. Journal of Power Sources, 196(11), pp. 5115–5121. doi: 10.1016/j.jpowsour.2011.01.103.10.1016/j.jpowsour.2011.01.103 Search in Google Scholar

Kremer, P., Cigarini, F., Gohlich, D. and Park, S. (2021). Active Cell Balancing for Life Cycle Extension of Lithium-Ion Batteries under Thermal Gradient. In: 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). Presented at the 2021 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED). IEEE, Boston, MA, USA, pp. 1–6. doi: 10.1109/ISLPED52811.2021.9502500.10.1109/ISLPED52811.2021.9502500 Search in Google Scholar

Kremzow-Tennie, S. (2021). Modelling the Impact of Alternative Fast Charging Algorithms on the Thermal Behaviour of Lithium-Ion-Batteries. 1. Search in Google Scholar

Kremzow-Tennie, S., Hellwig, M. and Pautzke, F. (2020). A Study on the Influencing Factors Regarding Energy Consumption of Electric Vehicles. In: 2020 21st International Conference on Research and Education in Mechatronics (REM). Presented at the 2020 21st International Conference on Research and Education in Mechatronics (REM). IEEE, Cracow, Poland, pp. 1–6. doi: 10.1109/REM49740.2020.9313934.10.1109/REM49740.2020.9313934 Search in Google Scholar

Kremzow-Tennie, S., Pautzke, F. and Boehm, K. A. (2019). Einflussuntersuchung verschiedener Schnellladeverfahren auf die Lebensdauer von Li-Ion Batterien. doi: 10.13140/RG.2.2.11668.24963. Search in Google Scholar

Kremzow-Tennie, S., Pautzke, F., Mecit, H., Scholz, T. and Schmuelling, B. (2021). A Suggestion Towards Improving Electric Vehicle Fast Charging. In:H. Proff, ed., Making Connected Mobility Work. Springer Fachmedien Wiesbaden, Wiesbaden, pp. 251–261. doi: 10.1007/978-3-658-32266-3_14.10.1007/978-3-658-32266-3_14 Search in Google Scholar

Lehtola, T. A. and Zahedi, A. (2021). Electric Vehicle Battery Cell Cycle Aging in Vehicle to Grid Operations: A Review. IEEE Journal of Emerging and Selected Topics in Power Electronics, 9(1), pp. 423–437. doi: 10.1109/JESTPE.2019.2959276.10.1109/JESTPE.2019.2959276 Search in Google Scholar

Lelie, M., Braun, T., Knips, M., Nordmann, H., Ringbeck, F., Zappen, H. and Sauer, D. U. (2018). Battery Management System Hardware Concepts: An Overview. Applied Sciences, 8(4), p. 534. doi: 10.3390/app8040534.10.3390/app8040534 Search in Google Scholar

Liu, K., Li, K., Peng, Q. and Zhang, C. (2019). A Brief Review on Key Technologies in the Battery Management System of Electric Vehicles. Frontiers of Mechanical Engineering, 14(1), pp. 47–64. doi: 10.1007/s11465-018-0516-8.10.1007/s11465-018-0516-8 Search in Google Scholar

Liu, Q., Du, C., Shen, B., Zuo, P., Cheng, X., Ma, Y., Yin, G. and Gao, Y. (2016). Understanding Undesirable Anode Lithium Plating Issues in Lithium-Ion Batteries. RSC Advances, 6(91), pp. 88683–88700. doi: 10.1039/C6RA19482F.10.1039/C6RA19482F Search in Google Scholar

Liu, X., Chen, Z., Zhang, C. and Wu, J. (2014). A Novel Temperature-Compensated Model for Power Li-Ion Batteries with Dual-Particle-Filter State of Charge Estimation. Applied Energy, 123, pp. 263–272. doi: 10.1016/j.apenergy.2014.02.072.10.1016/j.apenergy.2014.02.072 Search in Google Scholar

LTC6803 Linear Multicell Battery Monitor [WWW Document]. (2021). Scribd. Available at: https://www.scribd.com/document/54242037/LTC6803-Linear-Multicell-Battery-Monitor [Accessed 13 Dec. 2021]. Search in Google Scholar

Lu, R., Yang, A., Xue, Y., Xu, L. and Zhu, C. (2010). Analysis of the Key Factors Affecting the Energy Efficiency of Batteries in Electric Vehicle. World Electric Vehicle Journal, 4(1), pp. 9–13. doi: 10.3390/wevj4010009.10.3390/wevj4010009 Search in Google Scholar

Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T. and Shang, W. (2018). Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Progress in Natural Science: Materials International, 28(6), pp. 653–666. doi: 10.1016/j.pnsc.2018.11.002.10.1016/j.pnsc.2018.11.002 Search in Google Scholar

Mahmud, A. H., Daud, Z. H. and Asus, Z. (2017). The Impact of Battery Operating Temperature and State of Charge on the Lithium-Ion Battery Internal Resistance. Jurnal Mekanikal, 8. Search in Google Scholar

Marcos, D., Garmendia, M., Crego, J. and Cortajarena, J. A. (2020). Hazard and Risk Analysis on Lithium-based Batteries Oriented to Battery Management System Design. In: 2020 IEEE Vehicle Power and Propulsion Conference (VPPC). Presented at the 2020 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, Gijon, Spain, pp. 1–6. doi: 10.1109/VPPC49601.2020.9330888.10.1109/VPPC49601.2020.9330888 Search in Google Scholar

Matadi, B. P., Geniès, S., Delaille, A., Waldmann, T., Kasper, M., Wohlfahrt-Mehrens, M., Aguesse, F., Bekaert, E., Jiménez-Gordon, I., Daniel, L., Fleury, X., Bardet, M., Martin, J. F. and Bultel, Y. (2017). Effects of Biphenyl Polymerization on Lithium Deposition in Commercial Graphite/NMC Lithium-Ion Pouch-Cells during Calendar Aging at High Temperature. Journal of the Electrochemical Society, 164(6), pp. A1089–A1097. doi: 10.1149/2.0631706jes.10.1149/2.0631706jes Search in Google Scholar

Mu, H. and Xiong, R. (2018). Modeling, Evaluation, and State Estimation for Batteries, in: Modeling, Dynamics and Control of Electrified Vehicles. Woodhead Publishing, Elsevier, pp. 1–38. doi: 10.1016/B978-0-12-812786-5.00001-X.10.1016/B978-0-12-812786-5.00001-X Search in Google Scholar

Nikolian, A., Firouz, Y., Gopalakrishnan, R., Timmermans, J. M., Omar, N., van den Bossche, P. and van Mierlo, J. (2016). Lithium Ion Batteries— Development of Advanced Electrical Equivalent Circuit Models for Nickel Manganese Cobalt Lithium-Ion. Energies, 9(5), p. 360. doi: 10.3390/en9050360.10.3390/en9050360 Search in Google Scholar

Notten, P. H., het Veld, J. O. and Van Beek, J. R.(2005). Boostcharging Li-Ion Batteries: A Challenging New Charging Concept. Journal of Power Sources, 145(1), pp. 89–94. doi: 10.1016/j.jpowsour.2004.12.038.10.1016/j.jpowsour.2004.12.038 Search in Google Scholar

Noura, N., Boulon, L. and Jemeï, S. (2020). A Review of Battery State of Health Estimation Methods: Hybrid Electric Vehicle Challenges. World Electric Vehicle Journal, 11(4), p. 66. doi: 10.3390/wevj11040066.10.3390/wevj11040066 Search in Google Scholar

Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M. and Dietmayer, K. (2013). Health Diagnosis and Remaining Useful Life Prognostics of Lithium-Ion Batteries Using Data-Driven Methods. Journal of Power Sources, 239, pp. 680–688. doi: 10.1016/j.jpowsour.2012.11.146.10.1016/j.jpowsour.2012.11.146 Search in Google Scholar

Omariba, Z. B., Zhang, L. and Sun, D. (2019). Review of Battery Cell Balancing Methodologies for Optimizing Battery Pack Performance in Electric Vehicles. IEEE Access, 7, pp. 129335–129352. doi: 10.1109/ACCESS.2019.2940090.10.1109/ACCESS.2019.2940090 Search in Google Scholar

Pagar, O., Darekar, M., Gawde, S., Bhartiy, J., Thakre, M. and Deshmukh, B. (2021). Comparative Evaluation of Fast Charging Systems for the Advanced Electric Vehicles with Pulse Charging & Reflex Charging. SSRN Electronic Journal, doi: 10.2139/ssrn.3882535.10.2139/ssrn.3882535 Search in Google Scholar

Perisoara, L. A., Guran, I. C. and Costache, D. C. (2018). A Passive Battery Management System for Fast Balancing of Four LiFePO4 Cells. In: 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME). Presented at the 2018 IEEE 24th International Symposium for Design and Technology in Electronic Packaging (SIITME), IEEE, Iasi, pp. 390–393. doi: 10.1109/SIITME.2018.8599258.10.1109/SIITME.2018.8599258 Search in Google Scholar

Petzl, M., Kasper, M. and Danzer, M. A. (2015). Lithium Plating in a Commercial Lithium-Ion Battery – A Low-Temperature Aging Study. Journal of Power Sources, 275, pp. 799–807. doi: 10.1016/j.jpowsour.2014.11.065.10.1016/j.jpowsour.2014.11.065 Search in Google Scholar

Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W. and Podobnik, V. (2020). A Survey-Based Assessment of How Existing and Potential Electric Vehicle Owners Perceive Range Anxiety. Journal of Cleaner Production, 276, p. 122779. doi: 10.1016/j.jclepro.2020.122779.10.1016/j.jclepro.2020.122779 Search in Google Scholar

Pevec, D., Babic, J., Carvalho, A., Ghiassi-Farrokhfal, Y., Ketter, W. and Podobnik, V. (2019). Electric Vehicle Range Anxiety: An Obstacle for the Personal Transportation (r) evolution?. In: 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). Presented at the 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), IEEE, Split, Croatia, pp. 1–8. doi: 10.23919/SpliTech.2019.8783178. Search in Google Scholar

Popp, A., Fechtner, H., Schmuelling, B., Kremzow-Tennie, S., Scholz, T. and Pautzke, F. (2021). Battery Management Systems Topologies: Applications: Implications of Different Voltage Levels. In: 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA). Presented at the 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA). IEEE, Busan, Republic of Korea, pp. 43–50. doi: 10.1109/ICPEA52760.2021.9639285.10.1109/ICPEA52760.2021.9639285 Search in Google Scholar

Purushothaman, B. K., Morrison, P. W. and Landau, U. (2005). Reducing Mass-Transport Limitations by Application of Special Pulsed Current Modes. Journal of the Electrochemical Society, 152(4), p. J33. doi: 10.1149/1.1861172.10.1149/1.1861172 Search in Google Scholar

Rahimi-Eichi, H., Ojha, U., Baronti, F. and Chow, M. Y. (2013). Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles. IEEE Industrial Electronics Magazine, 7(2), pp. 4–16. doi: 10.1109/MIE.2013.2250351.10.1109/MIE.2013.2250351 Search in Google Scholar

Rathor, S. K. and Saxena, D. (2020). Energy Management System for Smart Grid: An Overview and Key Issues. International Journal of Energy Research, 44(6), pp. 4067–4109. doi: 10.1002/er.4883.10.1002/er.4883 Search in Google Scholar

Redondo-Iglesias, E., Venet, P. and Pelissier, S. (2017). Impact of Battery Ageing on E-mobility Energy Efficiency. In: 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). Presented at the 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, Monte-Carlo, Monaco, pp. 1–6. doi: 10.1109/EVER.2017.7935882.10.1109/EVER.2017.7935882 Search in Google Scholar

Reniers, J. M., Mulder, G. and Howey, D. A. (2019). Review and Performance Comparison of Mechanical-Chemical Degradation Models for Lithium-Ion Batteries. Journal of the Electrochemical Society, 166(14), pp. A3189–A3200. doi: 10.1149/2.0281914jes.10.1149/2.0281914jes Search in Google Scholar

Savoye, F., Venet, P., Millet, M. and Groot, J. (2012). Impact of Periodic Current Pulses on Li-Ion Battery Performance. IEEE Transactions on Industrial Electronics, 59(9), pp. 3481–3488. doi: 10.1109/TIE.2011.2172172.10.1109/TIE.2011.2172172 Search in Google Scholar

Scholz, T., Kremzow-Tennie, S., Pautzke, F., Fechtner, H., Popp, A. and Schmuelling, B. (2021). Analysis of Cell-to-Cell Variation in a Battery Pack after Long Service Life Using Parameter Identification. In: 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA). Presented at the 2021 IEEE 4th International Conference on Power and Energy Applications (ICPEA), IEEE, Busan, Republic of Korea, pp. 38–42. doi: 10.1109/ICPEA52760.2021.9639370.10.1109/ICPEA52760.2021.9639370 Search in Google Scholar

Schuster, S. F., Bach, T., Fleder, E., Müller, J., Brand, M., Sextl, G. and Jossen, A. J. (2015). Nonlinear Aging Characteristics of Lithium-Ion Cells Under Different Operational Conditions. Journal of Energy Storage, 1, pp. 44–53. doi: 10.1016/j.est.2015.05.003.10.1016/j.est.2015.05.003 Search in Google Scholar

Shang, Y., Zhang, C., Cui, N. and Guerrero, J. M. (2015). A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter. IEEE Transactions on Power Electronics, 30(7), pp. 3731–3747. doi: 10.1109/TPEL.2014.2345672.10.1109/TPEL.2014.2345672 Search in Google Scholar

Shen, M. and Gao, Q. (2019). A Review on Battery Management System From the Modeling Efforts to its Multiapplication and Integration. International Journal of Energy Research, 43(10), pp. 5042–5075. doi: 10.1002/er.4433.10.1002/er.4433 Search in Google Scholar

Shen, W., Vo. T. T. and Kapoor, A. (2012). Charging Algorithms of Lithium-Ion Batteries: An Overview. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA). Presented at the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), IEEE, Singapore, Singapore, pp. 1567–1572. doi: 10.1109/ICIEA.2012.6360973.10.1109/ICIEA.2012.6360973 Search in Google Scholar

Tomaszewska, A., Chu, Z., Feng, X., O’Kane, S., Liu, X., Chen, J., Ji, C., Endler, E., Li, R., Liu, L and Li, Y. (2019). Lithium-Ion Battery Fast Charging: A Review. ETransportation, 1, p. 100011. doi: 10.1016/j.etran.2019.100011.10.1016/j.etran.2019.100011 Search in Google Scholar

Trentadue, G., Lucas, A., Otura, M., Pliakostathis, K., Zanni, M. and Scholz, H. (2018). Evaluation of Fast Charging Efficiency under Extreme Temperatures. Energies, 11(8), 1937. doi: 10.3390/en11081937.10.3390/en11081937 Search in Google Scholar

Uzair, M., Abbas, G. and Hosain, S. (2021). Characteristics of Battery Management Systems of Electric Vehicles with Consideration of the Active and Passive Cell Balancing Process. World Electric Vehicle Journal, 12(3), p. 120. doi: 10.3390/wevj12030120.10.3390/wevj12030120 Search in Google Scholar

Van, C. N., Vinh, T. N., Ngo, M. D. and Ahn, S. J. (2021). Optimal SoC Balancing Control for Lithium-Ion Battery Cells Connected in Series. Energies, 14(10), p. 2875. doi: 10.3390/en14102875.10.3390/en14102875 Search in Google Scholar

Vidal, C., Malysz, P., Kollmeyer, P. and Emadi, A. (2020). Machine Learning Applied to Electrified Vehicle Battery State of Charge and State of Health Estimation: State-of-the-Art. IEEE Access, 8, pp. 52796–52814. doi: 10.1109/ACCESS.2020.2980961.10.1109/ACCESS.2020.2980961 Search in Google Scholar

Waag, W., Fleischer, C. and Sauer, D. U. (2014). Critical Review of the Methods for Monitoring of Lithium-Ion Batteries in Electric and Hybrid Vehicles. Journal of Power Sources, 258, pp. 321–339. doi: 10.1016/j.jpowsour.2014.02.064.10.1016/j.jpowsour.2014.02.064 Search in Google Scholar

Wang, S., Fan, Y., Stroe, D. I., Fernandez, C., Yu, C., Cao, W. and Chen, Z. (2021). Lithium-Ion Battery Characteristics and Applications. In: Battery System Modeling. Elsevier, pp. 1–46. doi: 10.1016/B978-0-323-90472-8.00003-2.10.1016/B978-0-323-90472-8.00003-2 Search in Google Scholar

Wang, Z., Wang, Y., Rong, Y., Li, Z. and Fantao, L. (2016). Study on the Optimal Charging Method for Lithium-Ion Batteries Used in Electric Vehicles. Energy Procedia, 88, pp. 1013–1017. doi: 10.1016/j.egypro.2016.06.127.10.1016/j.egypro.2016.06.127 Search in Google Scholar

Wang, D., Bao, Y. and Shi, J. (2017). Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter. Energies, 10(9), p. 1284. doi: 10.3390/en10091284.10.3390/en10091284 Search in Google Scholar

Xing, Y., He, W., Pecht, M. and Tsui, K. L. (2014). State of Charge Estimation of Lithium-Ion Batteries Using the Open-Circuit Voltage at Various Ambient Temperatures. Applied Energy, 113, pp. 106–115. doi: 10.1016/j.apenergy.2013.07.008.10.1016/j.apenergy.2013.07.008 Search in Google Scholar

Xu, B., Oudalov, A., Ulbig, A., Andersson, G. and Kirschen, D. S. (2018). Modeling of Lithium-Ion Battery Degradation for Cell Life Assessment. IEEE Transactions on Smart Grid, 9(2), pp. 1131–1140. doi: 10.1109/TSG.2016.2578950.10.1109/TSG.2016.2578950 Search in Google Scholar

Yang, X. G. and Wang, C. Y. (2018). Understanding the Trilemma of Fast Charging, Energy Density and Cycle Life of Lithium-Ion Batteries. Journal of Power Sources, 402, pp. 489–498. doi: 10.1016/j.jpowsour.2018.09.069.10.1016/j.jpowsour.2018.09.069 Search in Google Scholar

Yang, X. G., Zhang, G., Ge, S. and Wang, C. Y. (2018). Fast Charging of Lithium-Ion Batteries at all Temperatures. Proceedings of the National Academy of Sciences, 115(28), pp. 7266–7271. doi: 10.1073/pnas.1807115115.10.1073/pnas.1807115115604852529941558 Search in Google Scholar

Zhang, R., Xia, B., Li, B., Cao, L., Lai, Y., Zheng, W., Wang, H., Wang, W. and Wang, M. (2018). A Study on the Open Circuit Voltage and State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature. Energies, 11(9), p. 2408. doi: 10.3390/en11092408.10.3390/en11092408 Search in Google Scholar

Zhu, J., Mathews, I., Ren, D., Li, W., Cogswell, D., Xing, B., Sedlatschek, T., Kantareddy, S. N., Yi, M., Gao, T. and Xia, Y. (2021). End-of-Life or Second-Life Options for Retired Electric Vehicle Batteries. Cell Reports Physical Science, 2(8), p. 100537. doi: 10.1016/j.xcrp.2021.100537.10.1016/j.xcrp.2021.100537 Search in Google Scholar

eISSN:
2543-4292
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics