Acceso abierto

An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications


Cite

Antonello, R., Carraro, M., Peretti, L. and Zigliotto, M. (2016). Hierarchical Scaled-States Direct Predictive Control of Synchronous Reluctance Motor Drives. IEEE Transactions on Industrial Electronics, 63(8), pp. 5176–5185.10.1109/TIE.2016.2536581Search in Google Scholar

Bianchi, N., Bolognani, S., Carraro, E., Castiello, M. and Fornasiero, E. (2016). Electric Vehicle Traction Based on Synchronous Reluctance Motors. IEEE Transactions on Industry Applications, 52(6), pp. 4762–4769.10.1109/TIA.2016.2599850Search in Google Scholar

Buja, G. S. and Kazmierkowski, M. P. (2004). Direct Torque Control of PWM Inverter-Fed AC Motors — A Survey. IEEE Transactions on Industrial Electronics, 51(4), pp. 744–757.10.1109/TIE.2004.831717Search in Google Scholar

Grabowski, P. Z., Kazmierkowski, M. P., Bose, B. K. and Blaabjerg, F. (2000). A Simple Direct-Torque Neuro-Fuzzy Control of PWM-Inverter-Fed Induction Motor Drive. IEEE Transactions on Industrial Electronics, 47(4), pp. 863–870.10.1109/41.857966Search in Google Scholar

Guagnano, A., Rizzello, G., Cupertino, F. and Naso, D. (2016). Robust Control of High-Speed Synchronous Reluctance Machines. IEEE Transactions on Industry Applications, 52(5), pp. 3990–4000.10.1109/TIA.2016.2574774Search in Google Scholar

Hadla, S. C. H. (2016). Active flux based finite control set model predictive control of synchronous reluctance motor drives. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), Karlsruhe (Germany), pp. 1–10.10.1109/EPE.2016.7695377Search in Google Scholar

Hinkkanen, M., Asad, A. A. H., Qu, Z., Tuovinen, T. and Briz, F. (2016). Current Control for Synchronous Motor Drives: Direct Discrete-Time Pole-Placement Design. IEEE Transactions on Industry Applications, 52(2), pp. 1530–1541.Search in Google Scholar

Juhasz, G., Halasz, S. and Veszpremi, K. (2000). New aspects of a direct torque controlled induction motor drive. In: Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482), Goa (India), pp. 43–48.10.1109/ICIT.2000.854094Search in Google Scholar

Ma, X., Li, G., Zhu, Z., Jewell, G. W. and Green, J. (2018). Investigation on Synchronous Reluctance Machines with Different Rotor Topologies and Winding Configurations. IET Electric Power Applications, 12(1), pp. 45–53.10.1049/iet-epa.2017.0199Search in Google Scholar

Malinowski, M., Kazmierkowski, M. P., Hansen, S., Blaabjerg, F. and Marques, G. D. (2001). Virtual-Flux-Based Direct Power Control of Three-Phase PWM Rectifiers. IEEE Transactions on Industry Applications, 37(4), pp. 1019–1027.10.1109/28.936392Search in Google Scholar

Malinowski, M., Kazmierkowski, M. P. and Trzynadlowski, A. M. (2003). A Comparative Study of Control Techniques for PWM Rectifiers in AC Adjustable Speed Drives. IEEE Transactions on Power Electronics, 18(6), pp. 1390–1396.10.1109/TPEL.2003.818871Search in Google Scholar

Mishra, T., Devanshu, A., Kumar, N. and Kulkarni, A. R. (2016). Comparative analysis of Hysteresis Current Control and SVPWM on Fuzzy Logic based vector controlled Induction Motor Drive. In: 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi (India), pp. 1–6.10.1109/ICPEICES.2016.7853632Search in Google Scholar

Nardo, M. D., Calzo, G. L., Galea, M. and Gerada, C. (2018). Design Optimization of a High-Speed Synchronous Reluctance Machine. IEEE Transactions on Industry Applications, 54(1), pp. 233–243.10.1109/TIA.2017.2758759Search in Google Scholar

Orłowska-Kowalska, T. and Dybkowski, M. (2016). Industrial Drive Systems. Current State and Development Trends. Power Electronics and Drives, 36(1), pp. 5–25.Search in Google Scholar

Purohit, P. and Dubey, M. (2014). Analysis and design of hysteresis current controlled multilevel inverter fed PMSM drive. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Bhopal, pp. 1–5.10.1109/SCEECS.2014.6804532Search in Google Scholar

Schmidt, I. and Veszpremi, K. (2005). Application of direct controls to variable-speed wind generators. In: 2005 International Conference on Industrial Electronics and Control Applications, Quito (Ecuador), pp. 1–6.10.1109/ICIECA.2005.1644340Search in Google Scholar

Staudt, S., Stock, A., Kowalski, T., Teigelkötter, J. and Lang, K. (2015). Raw data based model and high dynamic control concept for traction drives powered by synchronous reluctance machines. In: 2015 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD), Torino (Italy), pp. 204–209.10.1109/WEMDCD.2015.7194530Search in Google Scholar

Schmidt, I., Vincze, K., Veszpremi, K. and Seller, B. (2001). Adaptive Hyste-resis Current Vector Control of Synchronous Servo Drives With Different Tolerance Areas. Periodica Polytechnica Electrical Engineering, 45(3–4), pp. 211–222.Search in Google Scholar

Vajsz, T., Számel, L. and Rácz, G. (2017). A Novel Modified DTC-SVM Method with Better Overload-Capability for Permanent Magnet Synchronous Motor Servo Drives. Periodica Polytechnica Electrical Engineering and Computer Science, 61(3), pp. 253–263.10.3311/PPee.10428Search in Google Scholar

Veszpremi, K. and Schmidt, I. (2008). Direct controls in voltage-source converters — Generalizations and deep study. In: 2008 13th International Power Electronics and Motion Control Conference, Poznan (Poland), pp. 1803–1810.10.1109/EPEPEMC.2008.4635527Search in Google Scholar

Zhang, X. and Foo, G. H. B. (2016). A Robust Field-Weakening Algorithm Based on Duty Ratio Regulation for Direct Torque Controlled Synchronous Reluctance Motor. IEEE/ASME Transactions on Mechatronics, 21(2), pp. 765–773.10.1109/TMECH.2015.2469096Search in Google Scholar

Zhang, X., Foo, G. H. B., Vilathgamuwa, D. M. and Maskell, D. L. (2015). An Improved Robust Field-Weakening Algorithm for Direct-Torque-Controlled Synchronous-Reluctance-Motor Drives. IEEE Transactions on Industrial Electronics, 62(5), pp. 3255–3264.10.1109/TIE.2014.2386798Search in Google Scholar

eISSN:
2543-4292
ISSN:
2451-0262
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics