1. bookVolumen 64 (2021): Edición 1 (June 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2545-2819
Primera edición
30 Sep 2018
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

Determination of the Stress Increase of the Unbonded Tendon in a Continuous Concrete Beam at Ultimate Capacity Using Nonlinear Analysis

Publicado en línea: 17 Jul 2021
Volumen & Edición: Volumen 64 (2021) - Edición 1 (June 2021)
Páginas: 109 - 128
Recibido: 26 Mar 2021
Aceptado: 26 Jun 2021
Detalles de la revista
License
Formato
Revista
eISSN
2545-2819
Primera edición
30 Sep 2018
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

Predicting the stress increase of an unbonded tendon in a post-tensioned continuous concrete beam at ultimate capacity is more difficult than when bonded tendons are used. The failure mechanisms of the continuous beam are also different to that of the simple-span beam. The loading type, ductility of the support area and moment redistribution influence the behaviour of the continuous structures. In this research, the simplified nonlinear analysis was used for predicting the unbonded tendon stress increase at ultimate capacity in continuous two-span beams. The model is based on the moment-curvature relationships of the reinforced concrete cross-sections under different compressive forces and deformations of the continuous beam under loading. The results have been compared with the experimental results of recent studies found in the literature. In addition, 92 unbonded post-tensioned two-span beams with different reinforcements have been examined by using the model and compared to the results obtained from empirical equations from the literature. The results from the nonlinear analysis correspond well to the results from the other models up to the reinforcement ratio of 0.35. The calculated values of the maximum moment capacity at the centre support were close to the results from the test beams.

Keywords

1. Maguire M, Chang M, Collins W & Sun Y: “Stress Increase of Unbonded Tendons in Continuous Post-Tensioned Members”. Journal of Bridge Engineering ASCE, 22(2), 2017, 12 pp.10.1061/(ASCE)BE.1943-5592.0000991Search in Google Scholar

2. Mattock A H, Yamazaki J & Kattula B T: “Comparative Study of Prestressed Concrete Beams, With and Without Bond”. ACI Journal, V.68, No. 2, February 1971, pp. 116-12510.14359/11298Search in Google Scholar

3. Cooke N, Park R & Yong P: “Flexural Strength of Prestressed Concrete Members with Unbonded Tendons”. PCI Journal, 26(6), 1981, pp. 52-8010.15554/pcij.11011981.52.81Search in Google Scholar

4. Du G & Tao X: “Ultimate Stress of Unbonded Tendons in Partially Prestressed Concrete Beams”. PCI Journal, V. 31, No 6, 1985, pp. 72-9110.15554/pcij.11011985.72.91Search in Google Scholar

5. Burns N H, Charney F A & Vines W R: “Tests of One-Way Post-Tensioned Slabs with Unbonded Tendons”. PCI Journal, V. 33, No. 5, September-October 1978, 66-8310.15554/pcij.09011978.66.83Search in Google Scholar

6. Harajli M H, Hijazi S: “Evaluation of the Ultimate Steel Stress in Partially Prestressed Concrete Members”. PCI Journal, V.36, No. 1, 1991, pp 62-82.10.15554/pcij.01011991.62.82Search in Google Scholar

7. Harajli M H: “On the Stress in Unbonded Tendons at Ultimate: Critical Assessment and Proposed Changes”. ACI Structural Journal, V. 103, No. 6, 2006, pp. 803-81210.14359/18231Search in Google Scholar

8. Harajli M H: “Proposed Modification of AASHTO-LRFD for Computing Stress in Unbonded Tendons at Ultimate”. Journal of Bridge Engineering ASCE, V.16, No. 6, 2011, pp.828-83810.1061/(ASCE)BE.1943-5592.0000183Search in Google Scholar

9. Harajli M H: “Tendon Stress at Ultimate in Continuous Unbonded Post-Tensioned Members: Proposed Modification of ACI 318, Eq. (18-4) and (18-5)”. ACI Structural Journal, V. 109, No. 2, 2012, pp.183-19210.14359/51683629Search in Google Scholar

10. Naaman A E & Alkhairi F M: “Stress at Ultimate in Unbonded Post-Tensioned Tendons: Part 2 – Proposed Methodology”. ACI Structural Journal, V.88, No. 6, November-December 1991, pp. 683-69210.14359/1288Search in Google Scholar

11. Weller B: “Experimentelle Untersuchungen zum Biegetragverhalten von Durchlaufträgen mit Vorspannung ohne Verbund“. Deutscher Ausschuss für Stahlbeton, Heft 391, Berlin 1988, Seite 73-125Search in Google Scholar

12. Kordina K & Hegger J: “Zur Ermittlung der Biegebruch-Tragfähigkeit bei Vorspannung ohne Verbund”. Beton- und Stahlbetonbau, Heft 4, April 1987, Seite 85-9010.1002/best.198700150Search in Google Scholar

13. Zhou W & Zheng W Z: “Experimental Research on Plastic Design Method and Moment Redistribution in Continuous Beams Prestressed with Unbonded Tendons”. Magazine of Concrete Research, V. 62, No. 1, 2010, pp. 51-6410.1680/macr.2008.62.1.51Search in Google Scholar

14. Zhou W & Zheng W Z: “Unbonded Tendon Stresses in Continuous Post-Tensioned Beams”. ACI Structural Journal, V.111, No. 3, May-June 2014, pp. 525-53610.14359/51686569Search in Google Scholar

15. Maguire M, Collins W N, Halbe K R & Roberts-Wollmann C L: “Multi-Span Members with Unbonded Tendons: Ultimate Strength Behavior”. ACI Structural Journal, No. 113-S18, March-April, 2016, pp. 195-20410.14359/51688192Search in Google Scholar

16. Allouche E N, Campbell T I, Green M F & Soudki K A: “Tendon Stress in Continuous Unbonded Prestressed Concrete Members – Part 2: Parametric Study”. PCI Journal, 44(1), 1999, pp. 60-7210.15554/pcij.01011999.60.73Search in Google Scholar

17. Kim S K & Lee D H: “Nonlinear Analysis Method for Continuous Post-Tensioned Concrete Members with Unbonded Tendons”. Engineering Structures, 40, 2012, pp.487-50010.1016/j.engstruct.2012.03.021Search in Google Scholar

18. Vu N A, Castel A & François R: “Response of Post-tensioned Concrete Beams with Unbonded Tendons including Serviceability and Ultimate State”. Engineering Structures, 32(2), 2010, pp. 556-55910.1016/j.engstruct.2009.11.001Search in Google Scholar

19. Zimmermann J: “Biegetragverhalten und Bemessung von Trägern mit Vorspannung ohne Verbund”. Deutscher Ausschuss für Stahlbeton, Heft 391, Berlin 1988, Seite 5-71Search in Google Scholar

20. European standard EN 1992-1-1, Eurocode 2: Design of concrete structures – Part 1-1: General rules and rules for buildings, 2005, 226 pp.Search in Google Scholar

21. fib Model Code 2010 (2013), fib Model Code for Concrete Structures. International Federation for Structural Concrete. Berlin: Ernst & Sohn, 2013, 402 p.10.1002/9783433604090Search in Google Scholar

22. Rombach G: “Spannbetonbau”. 2. Auflage, 2009, Seite 60810.1002/9783433600573Search in Google Scholar

23. Krüger W & Mertzsch O: “Spannbetonbau-Praxis nach Eurocode 2 Mit Berechnungsbeispielen”. 3. Auflage, Bauwerk BBB, Beuth, 2012, Seite 318Search in Google Scholar

24. ACI Committee 318: “Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary”. American Concrete Institute, Farmington Hills, MI, 2011, 503 pp.Search in Google Scholar

25. LUSAS Academic Bridge Plus softwareSearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo