Acceso abierto

Predicting the Plastic Rotational Capacity of Reinforced Concrete Elements Using Machine Learning

 y   
01 sept 2025

Cite
Descargar portada

Hurwitz, J., Kirsch, D. (2018). Machine Learning for dummies. Hoboken: Wiley. Search in Google Scholar

Kameshwar, S., Padgett, J. E. (2017). Effect of vehicle bridge interaction on seismic response and fragility of bridges. Earthquake Engineering Structural Dynamics, 47(3), 697–713. DOI:10.1002/eqe.2986. Search in Google Scholar

Koutsourelakis, P. S. (2010). Assessing structural vulnerability against earthquakes using multi-dimensional fragility surfaces: A Bayesian framework. Probabilistic Engineering Mechanics, 25, 49–60. DOI: 10.1016/j.probengmech.2009.05.005. Search in Google Scholar

Yazdi, A. J., Haukaas, T., Yang, T., Gardoni, P. (2016). Multivariate fragility models for earthquake engineering. Earthquake Spectra, 32, 441–461. DOI : 10.1193/061314eqs085m. Search in Google Scholar

German, S., Brilakis, I., Desroches, R. (2012). Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Advanced Engineering Informatics, 26, 846–858. DOI : 10.1016/j.aei.2012.06.005. Search in Google Scholar

Luo, H., Paal, S., G. (2019). A Locally Weighted Machine Learning Model for Generalized Prediction of Drift Capacity in Seismic Vulnerability Assessments. Computer-Aided Civil and Infrastructure Engineering, 34 (11), 935–50. DOI : 10.1111/mice.12456. Search in Google Scholar

Aladsani, M., Burton, H., Abdullah, S., Wallace, J. (2022). Explainable Machine Learning Model for Predicting Drift Capacity of Reinforced Concrete Walls. ACI Structural Journal, 119, 191-204. DOI: 10.14359/51734484. Search in Google Scholar

Abdullah, S. A., Wallace, J. W. (2019). Drift Capacity of Reinforced Concrete Structural Walls with Special Boundary Elements. ACI Structural Journal, V. 116, No. 1, 183-194. DOI: 10.14359/51710864 Search in Google Scholar

Berry, ., Parrish, ., & Eberhard, . (2004). PEER structural performance database user’s manual. Retrieved July 25, 2024, from http://nisee.berkeley.edu Search in Google Scholar

American Concrete Institute. (2019). Building Code Requirements for Structural Concrete. ACI 318-19. Michigan. Search in Google Scholar

Pokhrel, M., Bandelt, M. J. (2019). Plastic hinge behavior and rotation capacity in reinforced ductile concrete flexural members. Engineering Structures, 200, 109699–109699. DOI: 10.1016/j.engstruct.2019.109699. Search in Google Scholar

Mpampatsikos, V., Nascimbene, R., Petrini, L. (2008). A Critical Review of the R.C. Frame Existing Building Assessment Procedure According to Eurocode 8 and Italian Seismic Code. Journal of Earthquake Engineering. 12, 52-82. DOI:10.1080/13632460801925020. Search in Google Scholar

European Committee for Standardization. (2005). Eurocode 8, Design of Structures for Earthquake Resistance, Part 3: Assessment and Retrofitting of Buildings. EN-1998-3. Brussels. Search in Google Scholar

Moehle, J., Elwood, K. (2003). Collapse performance prediction for Reinforced Concrete frame structures. Proceedings of the Pacific Conference on Earthquake Engineering. Search in Google Scholar

Paulay, T., Priestley, M.,J.,N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings. New York: Wiley. Search in Google Scholar

Scikit-Learn. (2024). LinearRegression. Retrieved July 15, 2024, from https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html Search in Google Scholar

Jakkula, V. (2006). Tutorial on Support Vector Machine (SVM). School of EECS, Washington State University. 37 (2.5), 3. Search in Google Scholar

Boswell, D., (2002). Introduction to Support Vector Machines. Department of Computer Science and Engineering University of California, San Diego. 11. Search in Google Scholar

Drumond, R. (2019). Jupyter Notebook Viewer. Retrieved July 12, 2024, from https://nbviewer.org/github/RomuloDrumond/LSSVM/blob/master/LSSVC.ipynb Search in Google Scholar

Jijo, B., Abdulazeez, A. M. (2021). Classification based on decision tree algorithm for machine learning. Journal of Applied Science and Technology Trends, 2, 20–28. DOI: 10.38094/jastt20165. Search in Google Scholar

Uddin, S., Khan, A., Hossain, M., Moni, M., A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1), 281. DOI: 10.1186/s12911-019-1004-8. Search in Google Scholar

Readthedocs.io. (2022). XGBoost Documentation — xgboost 2.1.1 documentation. Retrieved July 16, 2024, from https://xgboost.readthedocs.io/en/stable/ Search in Google Scholar

Perez, F., Granger, B. (2015). Jupyter Notebook [computer software]. Berkeley : Project Jupyter. Search in Google Scholar

Scikit-Learn.org. (2024). Scikit-learn: machine learning in Python — scikit-learn 1.5.1 documentation Retrieved July 16, 2024, from https://scikit-learn.org/stable/ Search in Google Scholar

Nalcin, S. (2022). StandardScaler vs. MinMaxScaler vs. RobustScaler: Which one to use for your next ML project? Retrieved July 16, 2024, from https://medium.com/@onersarpnalcin/standardscaler-vs-minmaxscalervs-robustscaler-which-one-to-use-for-your-next-ml-project-ae5b44f571b9 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ingeniería, Introducciones y reseñas, Ingeniería, otros