Acceso abierto

Toxic Effects of Sodium Lauryl Sulfate on Antioxidant Defense System and DNA Damage in Fish Primary Hepatocyte Cultures


Cite

1. Holland, P.M., Rubingh, D.N. (1992). Mixed surfactant systems. An overview. In: P.M. Holland, D.N. Rubingh (Eds.), Mixed surfactant systems, ACS Symposium Series Vol.501 (pp. 2-30). Washington DC: American Chemical Society https://doi.org/10.1021/bk-1992-0501.ch00110.1021/bk-1992-0501.ch001 Search in Google Scholar

2. Alak, G., Yeltekin, A.Ç., Özgeris, F.B., et al. (2019). Therapeutic effect of N- acetyl cysteine as an antioxidant on rainbow trout’s brain in cypermethrin toxicity. Chemosphere 221, 30-36. https://doi.org/10.1016/j.chemosphere.2018.12.196 PMid:3063414610.1016/j.chemosphere.2018.12.19630634146 Search in Google Scholar

3. Chaturvedi, V., Kumar, A. (2010). Toxicity of sodium dodecyl sulfate in fishes and animals. A review. Int J Appl Biol Pharm Technol. 1(2): 630-633. Search in Google Scholar

4. Freitas, R., Silvestro, S., Coppola, F., Costa, S., Meucci, V., Battaglia, F., Intorre, L., et al. (2020). Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comp Biochem Physiol Part A Mol Integr Physiol. 242, 110656. https://doi.org/10.1016/j.cbpa.2020.110656 PMid:3192708910.1016/j.cbpa.2020.11065631927089 Search in Google Scholar

5. Yeltekin, A.Ç., Sağlamer, E. (2019). Toxic and trace element levels in Salmo trutta macrostigma and Oncorhynchus mykiss trout raised in different environments. Polish J Env Stud. 28(3): 1613-1621. https://doi.org/10.15244/pjoes/9062010.15244/pjoes/90620 Search in Google Scholar

6. Jimenez, B.D., Stegeman, J.J. (1990). Detoxication enzymes as indicators of environmental stress on fish. United States Search in Google Scholar

7. Bright, J. (2018). Explaining the emergence of political fragmentation on social media: the role of ideology and extremism. JCMC 23(1): 17-33. https://doi.org/10.1093/jcmc/zmx00210.1093/jcmc/zmx002 Search in Google Scholar

8. Akdis, C.A. (2021). Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 21:739-751. https://doi.org/10.1038/s41577-021-00538-7 PMid:3384660410.1038/s41577-021-00538-733846604 Search in Google Scholar

9. Öter, Ç., Selçuk Zorer, Ö. (2020). Kinetic, isothermal and thermodynamic studies on Th(IV) adsorption by different modified activated carbons. J Radioanal Nucl Chem. 323(1): 341-351. https://doi.org/10.1007/s10967-019-06830-010.1007/s10967-019-06830-0 Search in Google Scholar

10. Gutteridge, J.M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 41(12): 1819-1828. https://doi.org/10.1093/clinchem/41.12.1819 PMid:749763910.1093/clinchem/41.12.1819 Search in Google Scholar

11. Yang, X., Li, Y., Li, Y., Ren, X., Zhang, X., Hu, D., et al. (2017). Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol. 8, 600. https://doi.org/10.3389/fphys.2017.00600 PMid:28878685 PMCid:PMC557235710.3389/fphys.2017.00600557235728878685 Search in Google Scholar

12. Berry, M.N., Friend, D.S. (1969). High yield preparation of isolated rat liver parenchymal cells. J Cell Biol. 43(3): 506-520. https://doi.org/10.1083/jcb.43.3.506 PMid:4900611 PMCid:PMC210780110.1083/jcb.43.3.50621078014900611 Search in Google Scholar

13. Xia, E., Rao, G., Remmen, H.V., et al. (1995). Activities of antioxidant enzymes in various tissues of male Fischer rats are altered by food restriction. J Nutr. 125(2): 195-201. Search in Google Scholar

14. Flohe, L., Otting, F. (1984). Superoxide dismutase assays. Methods Enzymol. 105, 93-104. https://doi.org/10.1016/S0076-6879(84)05013-810.1016/S0076-6879(84)05013-86328209 Search in Google Scholar

15. Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-310.1016/S0076-6879(84)05016-3 Search in Google Scholar

16. Paglia, D.E., Valentina, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 70(1): 158-169. Search in Google Scholar

17. Flohe, L., Gunzler, W.A. (1984). Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121. https://doi.org/10.1016/S0076-6879(84)05015-110.1016/S0076-6879(84)05015-16727659 Search in Google Scholar

18. Alak, G., Ucar, A., Yeltekin, A.Ç. et al. (2018). Neuroprotective effects of dietary borax in the brain tissue of rainbow trout (Oncorhynchus mykiss) exposed to copper-induced toxicity. Fish Physiol Biochem. 44(5): 1409-1420. https://doi.org/10.1007/s10695-018-0530-0 PMid:2995958710.1007/s10695-018-0530-029959587 Search in Google Scholar

19. Mis, L., Comba, B., Uslu, S., et al. (2018). Effect of wheatgrass on DNA damage, oxidative stress index and histological findings in diabetic rats. I J Morphol. 36(4): 1235-1240. https://doi.org/10.4067/S0717-9502201800040123510.4067/S0717-95022018000401235 Search in Google Scholar

20. Placer, Z.A., Cushman, L.L., Johnson. B.C. (1966). Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem. 16(2): 359-364. https://doi.org/10.1016/0003-2697(66)90167-910.1016/0003-2697(66)90167-96007581 Search in Google Scholar

21. Sayeda, H.A.E., Authman, M.M.N. (2018). The protective role of Spirulina platensis to alleviate the Sodium dodecyl sulfate toxic effects in the catfish Clarias gariepinus (Burchell, 1822). Ecotoxicol Environ Saf. 163, 136-144. https://doi.org/10.1016/j.ecoenv.2018.07.060 PMid:3005358310.1016/j.ecoenv.2018.07.06030053583 Search in Google Scholar

22. Susmi, T.S., Rebello, S., Jisha, M.S. et al. (2010). Toxic effects of sodium dodecyl sulphate on grass carp (Ctenopharyngodon idella). Fish Technol. 47(2): 157-162. Search in Google Scholar

23. Yakovenko, B.V., Tretyak, O.P., Mekhed, O.B., et al. (2018). Effect of herbicides and surfactants on enzymes of energy metabolism in European carp. Ukr J Ecol. 8(1): 948-952. https://doi.org/10.15421/2018_29710.15421/2018_297 Search in Google Scholar

24. Feng, T., Li, Z.B., Guo, X.Q., Guo, J.P. (2008). Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defence system and acetylcholinesterase of Tilapia nilotica in vitro. Pestic Biochem Phys. 92(3): 107-113. https://doi.org/10.1016/j.pestbp.2007.10.00210.1016/j.pestbp.2007.10.002 Search in Google Scholar

25. Jifa, W., Zhiming, Y., Xiuxian, S., You, W., Xihua, C. (2006). Comparative researches on effects of sodium dodecyl benzene sulfonate and sodium dodecyl sulphate upon Lateolabrax japonicus biomarker system. Environ Toxicol Pharmacol. 20(3): 465-470. https://doi.org/10.1016/j.etap.2005.05.006 PMid:2178362710.1016/j.etap.2005.05.00621783627 Search in Google Scholar

26. Messina, M.C., Faggio, C., Laudicella, V.A. et al. (2014). Effect of sodium dodecyl sulphate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): Regulator y volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress. Aquat Toxicol. 157, 94-100. https://doi.org/10.1016/j.aquatox.2014.10.001 PMid:2545622310.1016/j.aquatox.2014.10.00125456223 Search in Google Scholar

27. Suganthi, K., Sri Kumaran, N., Thenmozhi, C., et al. (2012). In vitro antioxidant activities of jelly fish Chrysaora quinquecirrha venom from southeast coast of India. Asian Pac J Trop Biomed. 2(Suppl. 1): 347-351. https://doi.org/10.1016/S2221-1691(12)60186-510.1016/S2221-1691(12)60186-5 Search in Google Scholar

28. Jung, H.J., Ahn, H.I., Park, J.Y. et al. (2016). Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulphate. Int J Biol Macromol. 83, 282-287. https://doi.org/10.1016/j.ijbiomac.2015.11.063 PMid:2664283910.1016/j.ijbiomac.2015.11.06326642839 Search in Google Scholar

29. Freitas, E.C., Rocha, O. (2012). Acute and chronic effects of atrazine and sodium dodecyl sulphate on the tropical freshwater cladoceran Pseudosida ramosa. Ecotoxicology 21(5): 1347-1357. https://doi.org/10.1007/s10646-012-0888-1 PMid:2243415210.1007/s10646-012-0888-122434152 Search in Google Scholar

30. Mei, L., McClements, J.D., Decker, E.A. (1999). Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets. J Agric Food Chem. 47(6): 2267-2273. https://doi.org/10.1021/jf980955p PMid:1079462110.1021/jf980955p10794621 Search in Google Scholar

31. Costa, S., Coppola, F., Pretti, C., Intorre, L., Meucci, V., Soares, A.M.V.M., Freitas, R., Solé, M. (2020). The influence of climate change related factors on the response of two clam species to diclofenac. Ecotoxicol Environ Saf. 189, 109899. https://doi.org/10.1016/j.ecoenv.2019.109899 PMid:3177178210.1016/j.ecoenv.2019.10989931771782 Search in Google Scholar

32. Alak, G., Parlak, V., Yeltekin, A.Ç. et al. (2019). The protective effect exerted by dietary borax on toxicity metabolism in rainbow trout (Oncorhynchus mykiss) tissues. Comp Biochem Physiol C Toxicol Pharmacol. 216, 82-92. https://doi.org/10.1016/j.cbpc.2018.10.005 PMid:3041936010.1016/j.cbpc.2018.10.00530419360 Search in Google Scholar

33. Yeltekin, A.Ç., Oğuz, A.R. (2018). Antioxidant responses and DNA damage in primary hepatocytes of Van fish (Alburnus tarichi, Güldenstadt 1814) exposed to nonylphenol or octylphenol. Drug Chem Toxicol. 41(4): 415-423. https://doi.org/10.1080/01480545.2018.1461899 PMid:2972255010.1080/01480545.2018.146189929722550 Search in Google Scholar

34. Alak, G., Ucar, A., Yeltekin, A.Ç. et al. (2019). Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug Chem Toxicol. 42(2): 203-209. https://doi.org/10.1080/01480545.2018.1526180 PMid:3044919810.1080/01480545.2018.152618030449198 Search in Google Scholar

eISSN:
1857-7415
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other, Medicine, Basic Medical Science, Veterinary Medicine