Cite

1. Aleksejenko, I., & Kosenko K. (2012). National Report of Latvia. NKG Working Group on Geoid and Height System, Latvian Geospatial Information Agency. Retrieved from http://www.nkg.fi/nkg/sites/default/files/WGGHS2012_NKG_Geoid_Heght_KKosenko.pdf.Search in Google Scholar

2. Aleksejenko, I., Sakne, J., Kalinka, M., Reiniks, M., Krikstaponis, B., Parseliunas, E.K., Petroskevicius, P., & Viskontas, P. (2012). The united geodetic vertical network of Latvia and Lithuania. Geodesy and Cartography, 38(1), 9–19.10.3846/20296991.2012.679800Search in Google Scholar

3. Ellmann, A. (2012). Considerations on the further improvements of regional geoid modelling over the Baltic countries. Geodezija ir Kartografija, 36(1), 5–15.10.3846/gc.2010.01Search in Google Scholar

4. Ellmann, A. (2004). The geoid for the Baltic countries determined by the least squares modification of Stoke’s formula. Doctoral Dissertation in Geodesy. Stocholm: Royal Institute of Technology (KTH), Department of Infrastructure.Search in Google Scholar

5. Esri Support GIS Dictionary. (2017). Definition of geoid. Retrieved from https://support.esri.com/en/other-resources/gis-dictionary/term/geoidSearch in Google Scholar

6. Forsberg, R., Kaminskis, J., & Solheim, D. (1997). Geoid of the Nordic and Baltic Region from gravimetry and satellite altimetry. In J. Segawa, H. Fujimoto& S. Okubo (Eds.), Gravity, geoid and marine geodesy. (pp. 540–547). IAG Symp. Series, 117, Berlin: Springer.10.1007/978-3-662-03482-8_72Search in Google Scholar

7. International Centre for Global Earth Models. Retrieved from http://icgem.gfz-potsdam.de/ICGEMSearch in Google Scholar

8. Jäger, R., Kaminskis, J., Strauhmanis, J., & Younis, G. (2012). Determination of quasi-geoid as height component of the geodetic infrastructure for GNSS positioning services in the Baltic States. Latvian Journal of Physics and Technical Sciences, 3, 5–15.Search in Google Scholar

9. Janpaule, I., Jaeger, R., Younis, G., Kaminskis, J., & Zariņš, A. (2013). DFHRS-based computation of quasi-geoid of Latvia. Geodesy and Cartography, 39(1), 11–17. ISSN 2029-6991.10.3846/20296991.2013.788827Search in Google Scholar

10. Janpaule, I. (2014). Latvijas ģeoīda modeļa precizitātes uzlabošanas iespējas. [Latvian geoid model’s accuracy improvement opportunities]. In 72nd Scientific Conference of the University of Latvia, Astronomy and Geodesy Section, 5 February 2014, Latvia.Search in Google Scholar

11. Jivall, L., Kaminskis, J., & Parseliunas, E. (2008). Improvement and extension of ETRS 89 in Latvia and Lithuania based on the NKG 2003 GPS campaign. EUREF Publication No.16 (Band 40), (pp. 156–162), Frankfurt am Main.Search in Google Scholar

12. Jürgenson, H. (2002). Estonian geoid and other reference surfaces. Geodezija ir Kartografija, 28(3), 108–111.Search in Google Scholar

13. Jürgenson, H., Türk, K., & Randjärv, J. (2011). Determination and evaluation of the Estonian fitted geoid model EST-GEOID 2003. Geodesy and Cartography, 37(1), 15–21.10.3846/13921541.2011.558339Search in Google Scholar

14. Kaminskis, J. (2009). Apvienotais Latvijas gravimetriskais ģeoīds [Joint gravimetric geoid of Latvia]. Geomatics, 5, 13–20.Search in Google Scholar

15. Kaminskis, J. (2010). Geoid model for surveying in Latvia. In International FIG Congress “Facing the Challenges – Building the Capacity”, 10–16 April 2010 (pp. 1–7). Australia, Sidney.Search in Google Scholar

16. Kaminskis, J. (2010). Geoid model in Latvia and its development. PhD Thesis. Riga: RTU. ISBN 978-9934-507-27-4Search in Google Scholar

17. Kaminskis, J., Janpaule, I., Zarins, A., & Rothacher, M. (2016). Latvian digital zenith camera in test applications. In Proceedings of NKG 2014 General Assembly, 1–4 September 2014 (pp. 122–125). Gothenburg, Sweden, ISSN 0280-5731.Search in Google Scholar

18. Kaminskis, J., Vallis, A., Geipele, I., Stamure, I., Reiniks, M., & Krutova, U. (2017). Evaluation of the updated regional transition Q-geoid model. In EUREF Symposia 2017, 17–19 May 2017. Wroclaw. Retrieved from http://www.euref.eu/symposia/2017Wroclaw/02-11-Kaminskis.pdfSearch in Google Scholar

19. Lantmäteriet, SWEN08_RH2000 & SWEN08_RH70. (2016). Retrieved from https://www.lantmateriet.se/en/Maps-and-geographic-information/GPS-and-geodetic-surveys/Geodesy/Transformations/Geoid-models/Search in Google Scholar

20. Märdla, S. Oja, T., & Ellmann, A. (2014). Investigations towards the NKG2014 geoid model in Estonia. Abstract Book for the NKG General Assembly. Retrieved from https://www.lantmateriet.se/globalassets/kartor-och-geografisk-information/gps-och-matning/geodesi/rapporter_publikationer/rapporter/lantmaterirapport-2016-4-nkg-general-assembly-2014.pdfSearch in Google Scholar

21. Petroškevičius, P., & Paršeliūnas, E. (1995). Determination of the Lithuanian territory geoid. Geodezija ir Kartografija, 21(2), 50–58.Search in Google Scholar

22. Sas-Uhrynowski, A., Mroczek, S., Sas, A., Petroškevičius, P., Obuchowski, R., & Rimkus, D. (2002). Establishment of Lithuanian national gravimetric first order network. Geodezija ir Kartografija,28(3), 75–82.Search in Google Scholar

23. Sproģis, V., & Aleksejenko, I., (2014). Q-geoid model LV′14. Latvian Geospatial Information Agency. Retrieved from http://www.lgia.gov.lv/~/media/LGIA/Aktual14/Kvazogeoida_modelis_LV14_22112014.ashxSearch in Google Scholar

24. Torge, W. (2001). Geodesy (3rd ed.). Berlin, New York: Walter de Gruyter.10.1515/9783110879957Search in Google Scholar

eISSN:
0868-8257
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics