This work is licensed under the Creative Commons Attribution 4.0 International License.
Alderton W.K., Cooper C.E., Knowles R.G.: Nitric oxide synthases: Structure, function and inhibition. Biochem J 2001, 357, 593–615, doi: 10.1042/0264-6021:3570593.AldertonW.K.CooperC.E.KnowlesR.G.: Nitric oxide synthases: Structure, function and inhibition. Biochem J2001, 357, 593–615, doi: 10.1042/0264-6021:3570593.Open DOISearch in Google Scholar
Ali S.S., Ahsan H., Zia M.K., Siddiqui T., Khan F.H.: Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem 2020, 44, e13145, doi: 10.1111/jfbc.13145.AliS.S.AhsanH.ZiaM.K.SiddiquiT.KhanF.H.: Understanding oxidants and antioxidants: Classical team with new players. J Food Biochem2020, 44, e13145, doi: 10.1111/jfbc.13145.Open DOISearch in Google Scholar
Ansari A.R., Liu H.: Acute thymic involution and mechanisms for recovery. Arch Immunol Ther Exp 2017, 65, 401–420, doi: 10.1007/s00005-017-0462-x.AnsariA.R.LiuH.: Acute thymic involution and mechanisms for recovery. Arch Immunol Ther Exp2017, 65, 401–420, doi: 10.1007/s00005-017-0462-x.Open DOISearch in Google Scholar
Baird L., Dinkova-Kostova A.T.: The cytoprotective role of the keap1-nrf2 pathway. Arch Toxicol 2011, 85, 241–272, doi: 10.1007/s00204-011-0674-5.BairdL.Dinkova-KostovaA.T.: The cytoprotective role of the keap1-nrf2 pathway. Arch Toxicol2011, 85, 241–272, doi: 10.1007/s00204-011-0674-5.Open DOISearch in Google Scholar
Berkenbosch F., van Oers J., del Rey A., Tilders F., Besedovsky H.: Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science 1987, 238, 524–526, doi: 10.1126/science.2443979.BerkenboschF.van OersJ.del ReyA.TildersF.BesedovskyH.: Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science1987, 238, 524–526, doi: 10.1126/science.2443979.Open DOISearch in Google Scholar
Bi S., Qu Y., Shao J., Zhang J., Li W., Zhang L., Ni J., Cao L.: Ginsenoside rg3 ameliorates stress of broiler chicks induced by Escherichia coli lipopolysaccharide. Front Vet Sci 2022, 9, 878018, doi: 10.3389/fvets.2022.878018.BiS.QuY.ShaoJ.ZhangJ.LiW.ZhangL.NiJ.CaoL.: Ginsenoside rg3 ameliorates stress of broiler chicks induced by Escherichia coli lipopolysaccharide. Front Vet Sci2022, 9, 878018, doi: 10.3389/fvets.2022.878018.Open DOISearch in Google Scholar
Cinelli M.A., Do H.T., Miley G.P., Silverman R.B.: Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020, 40, 158–189, doi: 10.1002/med.21599.CinelliM.A.DoH.T.MileyG.P.SilvermanR.B.: Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev2020, 40, 158–189, doi: 10.1002/med.21599.Open DOISearch in Google Scholar
Dieckmann D., Plottner H., Berchtold S., Berger T., Schuler G.: Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med 2001, 193, 1303–1310, doi: 10.1084/jem.193.11.1303.DieckmannD.PlottnerH.BerchtoldS.BergerT.SchulerG.: Ex vivo isolation and characterization of CD4(+)CD25(+) T cells with regulatory properties from human blood. J Exp Med2001, 193, 1303–1310, doi: 10.1084/jem.193.11.1303.Open DOISearch in Google Scholar
Ducatelle R., Goossens E., De Meyer F., Eeckhaut V., Antonissen G., Haesebrouck F., Van Immerseel F.: Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet Res 2018, 49, 43, doi: 10.1186/s13567-018-0538-6.DucatelleR.GoossensE.De MeyerF.EeckhautV.AntonissenG.HaesebrouckF.Van ImmerseelF.: Biomarkers for monitoring intestinal health in poultry: Present status and future perspectives. Vet Res2018, 49, 43, doi: 10.1186/s13567-018-0538-6.Open DOISearch in Google Scholar
El-Ashmawy N.E., Khedr N.F., El-Bahrawy H.A., El-Adawy S.A.: Downregulation of iNOS and elevation of camp mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology 2018, 26, 551–559, doi: 10.1007/s10787-017-0373-9.El-AshmawyN.E.KhedrN.F.El-BahrawyH.A.El-AdawyS.A.: Downregulation of iNOS and elevation of camp mediate the anti-inflammatory effect of glabridin in rats with ulcerative colitis. Inflammopharmacology2018, 26, 551–559, doi: 10.1007/s10787-017-0373-9.Open DOISearch in Google Scholar
Förstermann U., Xia N., Li H.: Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 2017, 120, 713–735, doi: 10.1161/circresaha.116.309326.FörstermannU.XiaN.LiH.: Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res2017, 120, 713–735, doi: 10.1161/circresaha.116.309326.Open DOISearch in Google Scholar
Gaines A.M., Carroll J.A., Yi G.F., Allee G.L., Zannelli M.E.: Effect of menhaden fish oil supplementation and lipopolysaccharide exposure on nursery pigs. II. Effects on the immune axis when fed simple or complex diets containing no spray-dried plasma. Domest Anim Endocrinol 2003, 24, 353–365, doi: 10.1016/s0739-7240(03)00016-x.GainesA.M.CarrollJ.A.YiG.F.AlleeG.L.ZannelliM.E.: Effect of menhaden fish oil supplementation and lipopolysaccharide exposure on nursery pigs. II. Effects on the immune axis when fed simple or complex diets containing no spray-dried plasma. Domest Anim Endocrinol2003, 24, 353–365, doi: 10.1016/s0739-7240(03)00016-x.Open DOISearch in Google Scholar
Halliwell B.: Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol 1995, 49, 1341–1348, doi: 10.1016/0006-2952(95)00088-h.HalliwellB.: Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol1995, 49, 1341–1348, doi: 10.1016/0006-2952(95)00088-h.Open DOISearch in Google Scholar
Han X., Wang Y., Chen H., Zhang J., Xu C., Li J., Li M.: Enhancement of icam-1 via the jak2/stat3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury. Exp Ther Med 2016, 11, 788–796, doi: 10.3892/etm.2016.2988.HanX.WangY.ChenH.ZhangJ.XuC.LiJ.LiM.: Enhancement of icam-1 via the jak2/stat3 signaling pathway in a rat model of severe acute pancreatitis-associated lung injury. Exp Ther Med2016, 11, 788–796, doi: 10.3892/etm.2016.2988.Open DOISearch in Google Scholar
Hsieh C.S., Lee H.M., Lio C.W.: Selection of regulatory T cells in the thymus. Nat Rev Immunol 2012, 12, 157–167, doi: 10.1038/nri3155.HsiehC.S.LeeH.M.LioC.W.: Selection of regulatory T cells in the thymus. Nat Rev Immunol2012, 12, 157–167, doi: 10.1038/nri3155.Open DOISearch in Google Scholar
Huang D., Ou B., Prior R.L.: The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005, 53, 1841–1856, doi: 10.1021/jf030723c.HuangD.OuB.PriorR.L.: The chemistry behind antioxidant capacity assays. J Agric Food Chem2005, 53, 1841–1856, doi: 10.1021/jf030723c.Open DOISearch in Google Scholar
Huang H., Liu A., Wu H., Ansari A.R., Wang J., Huang X., Zhao X., Peng K., Zhong J., Liu H.: Transcriptome analysis indicated that Salmonella lipopolysaccharide-induced thymocyte death and thymic atrophy were related to TLR4-FOS/JUN pathway in chicks. BMC Genomics 2016, 17, 322, doi: 10.1186/s12864-016-2674-6.HuangH.LiuA.WuH.AnsariA.R.WangJ.HuangX.ZhaoX.PengK.ZhongJ.LiuH.: Transcriptome analysis indicated that Salmonella lipopolysaccharide-induced thymocyte death and thymic atrophy were related to TLR4-FOS/JUN pathway in chicks. BMC Genomics2016, 17, 322, doi: 10.1186/s12864-016-2674-6.Open DOISearch in Google Scholar
Huang Y., Li W., Su Z.Y., Kong A.N.: The complexity of the Nrf2 pathway: Beyond the antioxidant response. J Nutr Biochem 2015, 26, 1401–1413, doi: 10.1016/j.jnutbio.2015.08.001.HuangY.LiW.SuZ.Y.KongA.N.: The complexity of the Nrf2 pathway: Beyond the antioxidant response. J Nutr Biochem2015, 26, 1401–1413, doi: 10.1016/j.jnutbio.2015.08.001.Open DOISearch in Google Scholar
Jaiswal A.K.: Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med 2004, 36, 1199–1207, doi: 10.1016/j.freeradbiomed.2004.02.074.JaiswalA.K.: Nrf2 signaling in coordinated activation of antioxidant gene expression. Free Radic Biol Med2004, 36, 1199–1207, doi: 10.1016/j.freeradbiomed.2004.02.074.Open DOISearch in Google Scholar
Johnson R.W., von Borell E.: Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin. J Anim Sci 1994, 72, 309–314, doi: 10.2527/1994.722309x.JohnsonR.W.von BorellE.: Lipopolysaccharide-induced sickness behavior in pigs is inhibited by pretreatment with indomethacin. J Anim Sci1994, 72, 309–314, doi: 10.2527/1994.722309x.Open DOISearch in Google Scholar
Kimball S.R., Orellana R.A., O’Connor P.M., Suryawan A., Bush J.A., Nguyen H.V., Thivierge M.C., Jefferson L.S., Davis T.A.: Endotoxin induces differential regulation of mtor-dependent signaling in skeletal muscle and liver of neonatal pigs. Am J Physiol Endocrinol Metab 2003, 285, E637–644, doi: 10.1152/ajpendo.00340.2002.KimballS.R.OrellanaR.A.O’ConnorP.M.SuryawanA.BushJ.A.NguyenH.V.ThiviergeM.C.JeffersonL.S.DavisT.A.: Endotoxin induces differential regulation of mtor-dependent signaling in skeletal muscle and liver of neonatal pigs. Am J Physiol Endocrinol Metab2003, 285, E637–644, doi: 10.1152/ajpendo.00340.2002.Open DOISearch in Google Scholar
Kurutas E.B.: The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J 2016, 15, 71, doi: 10.1186/s12937-016-0186-5.KurutasE.B.: The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutr J2016, 15, 71, doi: 10.1186/s12937-016-0186-5.Open DOISearch in Google Scholar
Lewkowicz P., Lewkowicz N., Sasiak A., Tchórzewski H.: Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol 2006, 177, 7155–7163, doi: 10.4049/jimmunol.177.10.7155.LewkowiczP.LewkowiczN.SasiakA.TchórzewskiH.: Lipopolysaccharide-activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol2006, 177, 7155–7163, doi: 10.4049/jimmunol.177.10.7155.Open DOISearch in Google Scholar
Li W., Kong A.N.: Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog 2009, 48, 91–104, doi: 10.1002/mc.20465.LiW.KongA.N.: Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog2009, 48, 91–104, doi: 10.1002/mc.20465.Open DOISearch in Google Scholar
Lu M.C., Ji J.A., Jiang Z.Y., You Q.D.: The Keap1-Nrf2-are pathway as a potential preventive and therapeutic target: An update. Med Res Rev 2016, 36, 924–963, doi: 10.1002/med.21396.LuM.C.JiJ.A.JiangZ.Y.YouQ.D.: The Keap1-Nrf2-are pathway as a potential preventive and therapeutic target: An update. Med Res Rev2016, 36, 924–963, doi: 10.1002/med.21396.Open DOISearch in Google Scholar
Ma P., Gu K., Li H., Zhao Y., Li C., Wen R., Zhou C., Lei C., Yang X., Wang H.: Infectious bronchitis virus Nsp14 degrades JAK1 to inhibit the JAK-STAT signaling pathway in HD11 cells. Viruses 2022, 14, 1045, doi: 10.3390/v14051045.MaP.GuK.LiH.ZhaoY.LiC.WenR.ZhouC.LeiC.YangX.WangH.: Infectious bronchitis virus Nsp14 degrades JAK1 to inhibit the JAK-STAT signaling pathway in HD11 cells. Viruses2022, 14, 1045, doi: 10.3390/v14051045.Open DOISearch in Google Scholar
Majumdar S., Adiga V., Raghavan A., Rananaware S.R., Nandi D.: Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology 2019, 157, 21–36, doi: 10.1111/imm.13043.MajumdarS.AdigaV.RaghavanA.RananawareS.R.NandiD.: Comparative analysis of thymic subpopulations during different modes of atrophy identifies the reactive oxygen species scavenger, N-acetyl cysteine, to increase the survival of thymocytes during infection-induced and lipopolysaccharide-induced thymic atrophy. Immunology2019, 157, 21–36, doi: 10.1111/imm.13043.Open DOISearch in Google Scholar
Manley N.R., Richie E.R., Blackburn C.C., Condie B.G., Sage J.: Structure and function of the thymic microenvironment. Front Biosci 2011, 16, 2461–2477, doi: 10.2741/3866.ManleyN.R.RichieE.R.BlackburnC.C.CondieB.G.SageJ.: Structure and function of the thymic microenvironment. Front Biosci2011, 16, 2461–2477, doi: 10.2741/3866.Open DOISearch in Google Scholar
Nandi A., Yan L.J., Jana C.K., Das N.: Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid Med Cell Longev 2019, 2019, 9613090, doi: 10.1155/2019/9613090.NandiA.YanL.J.JanaC.K.DasN.: Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid Med Cell Longev2019, 2019, 9613090, doi: 10.1155/2019/9613090.Open DOISearch in Google Scholar
Park B.S., Lee J.O.: Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med 2013, 45, e66, doi: 10.1038/emm.2013.97.ParkB.S.LeeJ.O.: Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med2013, 45, e66, doi: 10.1038/emm.2013.97.Open DOISearch in Google Scholar
Pisoschi A.M., Pop A.: The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015, 97, 55–74, doi: 10.1016/j.ejmech.2015.04.040.PisoschiA.M.PopA.: The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem2015, 97, 55–74, doi: 10.1016/j.ejmech.2015.04.040.Open DOISearch in Google Scholar
Poltorak A., Smirnova I., He X., Liu M.Y., Van Huffel C., McNally O., Birdwell D., Alejos E., Silva M., Du X., Thompson P., Chan E.K., Ledesma J., Roe B., Clifton S., Vogel S.N., Beutler B.: Genetic and physical mapping of the Lps locus: Identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis 1998, 24, 340–355, doi: 10.1006/bcmd.1998.0201.PoltorakA.SmirnovaI.HeX.LiuM.Y.Van HuffelC.McNallyO.BirdwellD.AlejosE.SilvaM.DuX.ThompsonP.ChanE.K.LedesmaJ.RoeB.CliftonS.VogelS.N.BeutlerB.: Genetic and physical mapping of the Lps locus: Identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Mol Dis1998, 24, 340–355, doi: 10.1006/bcmd.1998.0201.Open DOISearch in Google Scholar
Rosadini C.V., Kagan J.C.: Early innate immune responses to bacterial LPS. Curr Opin Immunol 2017, 44, 14–19, doi: 10.1016/j.coi.2016.10.005.RosadiniC.V.KaganJ.C.: Early innate immune responses to bacterial LPS. Curr Opin Immunol2017, 44, 14–19, doi: 10.1016/j.coi.2016.10.005.Open DOISearch in Google Scholar
Ross E.A., Coughlan R.E., Flores-Langarica A., Lax S., Nicholson J., Desanti G.E., Marshall J.L., Bobat S., Hitchcock J., White A., Jenkinson W.E., Khan M., Henderson I.R., Lavery G.G., Buckley C.D., Anderson G., Cunningham A.F.: Thymic function is maintained during salmonella-induced atrophy and recovery. J Immunol 2012, 189, 4266–4274, doi: 10.4049/jimmunol.1200070.RossE.A.CoughlanR.E.Flores-LangaricaA.LaxS.NicholsonJ.DesantiG.E.MarshallJ.L.BobatS.HitchcockJ.WhiteA.JenkinsonW.E.KhanM.HendersonI.R.LaveryG.G.BuckleyC.D.AndersonG.CunninghamA.F.: Thymic function is maintained during salmonella-induced atrophy and recovery. J Immunol2012, 189, 4266–4274, doi: 10.4049/jimmunol.1200070.Open DOISearch in Google Scholar
Rubio V., García-Pérez A.I., Herráez A., Diez J.C.: Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cells. Chem Biol Interact 2018, 294, 158–166, doi: 10.1016/j.cbi.2018.08.015.RubioV.García-PérezA.I.HerráezA.DiezJ.C.: Different roles of Nrf2 and NFKB in the antioxidant imbalance produced by esculetin or quercetin on NB4 leukemia cells. Chem Biol Interact2018, 294, 158–166, doi: 10.1016/j.cbi.2018.08.015.Open DOISearch in Google Scholar
Sampath V.: Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. Agric Nat Resour 2018, 52, 115–120, doi: 10.1016/j.anres.2018.08.002.SampathV.: Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. Agric Nat Resour2018, 52, 115–120, doi: 10.1016/j.anres.2018.08.002.Open DOISearch in Google Scholar
Santovito G., Trentin E., Gobbi I., Bisaccia P., Tallandini L., Irato P.: Non-enzymatic antioxidant responses of Mytilus galloprovincialis: Insights into the physiological role against metal-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol 2021, 240, 108909, doi: 10.1016/j.cbpc.2020.108909.SantovitoG.TrentinE.GobbiI.BisacciaP.TallandiniL.IratoP.: Non-enzymatic antioxidant responses of Mytilus galloprovincialis: Insights into the physiological role against metal-induced oxidative stress. Comp Biochem Physiol C Toxicol Pharmacol2021, 240, 108909, doi: 10.1016/j.cbpc.2020.108909.Open DOISearch in Google Scholar
Simmonds R.E., Foxwell B.M.: Signalling, inflammation and arthritis: NF-κB and its relevance to arthritis and inflammation. Rheumatology 2008, 47, 584-590.SimmondsR.E.FoxwellB.M.: Signalling, inflammation and arthritis: NF-κB and its relevance to arthritis and inflammation. Rheumatology2008, 47, 584–590.Search in Google Scholar
Spurlock M.E.: Regulation of metabolism and growth during immune challenge: An overview of cytokine function. J Anim Sci 1997, 75, 1773–1783, doi: 10.2527/1997.7571773x.SpurlockM.E.: Regulation of metabolism and growth during immune challenge: An overview of cytokine function. J Anim Sci1997, 75, 1773–1783, doi: 10.2527/1997.7571773x.Open DOISearch in Google Scholar
Surh Y.J.: Nf-kappa b and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr 2008, 17S1, 269-272.SurhY.J.: Nf-kappa b and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities. Asia Pac J Clin Nutr2008, 17S1, 269–272.Search in Google Scholar
Suzuki T., Yamamoto M.: Molecular basis of the keap1-nrf2 system. Free Radic Biol Med 2015, 88, 93–100, doi: 10.1016/j.freeradbiomed.2015.06.006.SuzukiT.YamamotoM.: Molecular basis of the keap1-nrf2 system. Free Radic Biol Med2015, 88, 93–100, doi: 10.1016/j.freeradbiomed.2015.06.006.Open DOISearch in Google Scholar
Venables T., Griffith A.V., DeAraujo A., Petrie H.T.: Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. Nat Commun 2019, 10, 4402, doi: 10.1038/s41467-019-11879-2.VenablesT.GriffithA.V.DeAraujoA.PetrieH.T.: Dynamic changes in epithelial cell morphology control thymic organ size during atrophy and regeneration. Nat Commun2019, 10, 4402, doi: 10.1038/s41467-019-11879-2.Open DOISearch in Google Scholar
Wright S.D., Tobias P.S., Ulevitch R.J., Ramos R.A.: Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med 1989, 170, 1231–1241, doi: 10.1084/jem.170.4.1231.WrightS.D.TobiasP.S.UlevitchR.J.RamosR.A.: Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. J Exp Med1989, 170, 1231–1241, doi: 10.1084/jem.170.4.1231.Open DOISearch in Google Scholar
Xiao Z., Kong B., Fang J., Qin T., Dai C., Shuai W., Huang H.: Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered 2021, 12, 9367–9376, doi: 10.1080/21655979.2021.2001913.XiaoZ.KongB.FangJ.QinT.DaiC.ShuaiW.HuangH.: Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered2021, 12, 9367–9376, doi: 10.1080/21655979.2021.2001913.Open DOISearch in Google Scholar
Yin C., Pei X.Y., Shen H., Gao Y.N., Sun X.Y., Wang W., Ge Q., Zhang Y.: Thymic homing of activated CD4(+) T cells induces degeneration of the thymic epithelium through excessive rank signaling. Sci Rep 2017, 7, 2421, doi: 10.1038/s41598-017-02653-9.YinC.PeiX.Y.ShenH.GaoY.N.SunX.Y.WangW.GeQ.ZhangY.: Thymic homing of activated CD4(+) T cells induces degeneration of the thymic epithelium through excessive rank signaling. Sci Rep2017, 7, 2421, doi: 10.1038/s41598-017-02653-9.Open DOISearch in Google Scholar
Yuan P.Q., Wu S.V., Pothoulakis C., Taché Y.: Urocortins and crf receptor type 2 variants in the male rat colon: Gene expression and regulation by endotoxin and anti-inflammatory effect. Am J Physiol Gastrointest Liver Physiol 2016, 310, G387–398, doi: 10.1152/ajpgi.00337.2015.YuanP.Q.WuS.V.PothoulakisC.TachéY.: Urocortins and crf receptor type 2 variants in the male rat colon: Gene expression and regulation by endotoxin and anti-inflammatory effect. Am J Physiol Gastrointest Liver Physiol2016, 310, G387–398, doi: 10.1152/ajpgi.00337.2015.Open DOISearch in Google Scholar
Zakharova L.A., Izvolskaia M.S.: Chapter 11, Interactions between reproductive and immune systems during ontogeny: Roles of GnRH, sex steroids, and immunomediators, In: Sex Steroids, edited by S.M. Kahn, Intech Open, Rijeka, Croatia, 2012ZakharovaL.A.IzvolskaiaM.S.: Chapter 11, Interactions between reproductive and immune systems during ontogeny: Roles of GnRH, sex steroids, and immunomediators, In: Sex Steroids, edited by S.M.Kahn, Intech Open, Rijeka, Croatia, 2012Search in Google Scholar
Zhang F.X., Kirschning C.J., Mancinelli R., Xu X.P., Jin Y., Faure E., Mantovani A., Rothe M., Muzio M., Arditi M.: Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem 1999, 274, 7611–7614, doi: 10.1074/jbc.274.12.7611.ZhangF.X.KirschningC.J.MancinelliR.XuX.P.JinY.FaureE.MantovaniA.RotheM.MuzioM.ArditiM.: Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem1999, 274, 7611–7614, doi: 10.1074/jbc.274.12.7611.Open DOISearch in Google Scholar
Zhang H., Neuhöfer P., Song L., Rabe B., Lesina M., Kurkowski M.U., Treiber M., Wartmann T., Regnér S., Thorlacius H., Saur D., Weirich G., Yoshimura A., Halangk W., Mizgerd J.P., Schmid R.M., Rose-John S., Algül H.: Il-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest 2013, 123, 1019–1031, doi: 10.1172/jci64931.ZhangH.NeuhöferP.SongL.RabeB.LesinaM.KurkowskiM.U.TreiberM.WartmannT.RegnérS.ThorlaciusH.SaurD.WeirichG.YoshimuraA.HalangkW.MizgerdJ.P.SchmidR.M.Rose-JohnS.AlgülH.: Il-6 trans-signaling promotes pancreatitis-associated lung injury and lethality. J Clin Invest2013, 123, 1019–1031, doi: 10.1172/jci64931.Open DOISearch in Google Scholar
Zhao W.R., Shi W.T., Zhang J., Zhang K.Y., Qing Y., Tang J.Y., Chen X.L., Zhou Z.Y.: Tribulus terrestris L. extract protects against lipopolysaccharide-induced inflammation in RAW 264.7 macrophage and zebrafish via inhibition of Akt/MAPk and NF-κB/iNOS-NO signaling pathways. Evid Based Complement Alternat Med 2021, 2021, 6628561, doi: 10.1155/2021/6628561.ZhaoW.R.ShiW.T.ZhangJ.ZhangK.Y.QingY.TangJ.Y.ChenX.L.ZhouZ.Y.: Tribulus terrestris L. extract protects against lipopolysaccharide-induced inflammation in RAW 264.7 macrophage and zebrafish via inhibition of Akt/MAPk and NF-κB/iNOS-NO signaling pathways. Evid Based Complement Alternat Med2021, 2021, 6628561, doi: 10.1155/2021/6628561.Open DOISearch in Google Scholar
Zhu H., Jian Z., Zhong Y., Ye Y., Zhang Y., Hu X., Pu B., Gu L., Xiong X.: Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing nlrp3 inflammasome activation via jak2/stat3 pathway inhibition. Front Immunol 2021, 12, 714943. doi: 10.3389/fimmu.2021.714943.ZhuH.JianZ.ZhongY.YeY.ZhangY.HuX.PuB.GuL.XiongX.: Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing nlrp3 inflammasome activation via jak2/stat3 pathway inhibition. Front Immunol2021, 12, 714943. doi: 10.3389/fimmu.2021.714943.Open DOISearch in Google Scholar