Cite

Angulo-Martínez, M., Beguería, S., Kyselý, J., 2016. Use of disdrometer data to evaluate the relationship of rainfall kinetic energy and intensity (KE-I). Sci. Total Environ., 568, 83–94. https://doi.org/10.1016/j.scitotenv.2016.05.223.10.1016/j.scitotenv.2016.05.223 Search in Google Scholar

Asadpour, F., Habibi, A., 2015. Strategies for climatic design for sustainable urban housing development (case study of Nur City, Mazandaran, Iran. Sci. J. (CSJ), 36, 6, 653–654. Search in Google Scholar

Bringi, V.N., Chandrasekar, V., Hubbert, J., Gorgucci, E., Randeuand, W.L., Schoenhuber, M., 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. Atmos. Res., 60, 354–365. https://doi.org/10.1175/1520-0469 Search in Google Scholar

Chang, X., Zheng, K., Xie, D., Shu, X., Xu, K., Chen, W., Li, B., Wu, Ch., 2019. In situ image acquisition and measurement of microdroplets based on delay triggering. Micromachines, 10, 2, 148. https://doi.org/10.3390/mi1002014810.3390/mi10020148 Search in Google Scholar

Chang, W.-Y., Lee, G., Jou, B. J.-D., Lee, W.-C., Lin, P.-L., Yu, C.-K., 2020. Uncertainty in measured raindrop size distributions from four types of collocated instruments. Remote Sens., 12, 1167. https://doi.org/10.3390/rs1207116710.3390/rs12071167 Search in Google Scholar

Cruvinel, P.E., Vieira, S.R., Crestana, S., Minatel, E.R., Mucheroni, M.L., Neto, A.T., 2017. Image processing in automated measurements of raindrop size and distribution. Comput. Electron. Agr., 23, 3, 205–217. https://doi.org/10.1016/S0168-1699(99)00043-510.1016/S0168-1699(99)00043-5 Search in Google Scholar

Dafaallah, A., 2019. 12 Duncan’s multiple range test (DMRT). 10.13140/RG.2.2.16262.93764. Search in Google Scholar

Das, S.K., Konwar, M., Chakravarty, K., Deshpande, S.M., 2017. Raindrop size distribution of different cloud types over the western ghats using simultaneous measurements from micro-rain radar and disdrometer. Atmos. Res., 186, 72–82. https://doi.org/10.1016/j.atmosres.2016.11.00310.1016/j.atmosres.2016.11.003 Search in Google Scholar

D’Adderio, L.P., Porcù, F., Tokay, A., 2018. Evolution of drop size distribution in natural rain. Atmos. Res., 200, 70–76. https://doi.org/10.1016/j.atmosres.2017.10.00310.1016/j.atmosres.2017.10.003 Search in Google Scholar

DeBoer, D. W., Monnens, M. J., Kincaid, D.C., 2001. Measurement of sprinkler drop size. Appl. Eng. Agric., 17, 1, 11–15. https://doi.org/10.13031/2013.193110.13031/2013.1931 Search in Google Scholar

Eigel, J.D., Moore, I.D., 1983. A simplified technique for measuring raindrop size and distribution. Trans. ASAE., 26, 4, 1079–1084. https://doi.org/10.13031/2013.3408010.13031/2013.34080 Search in Google Scholar

Exner, T., Beretta, C.A., Gao, Q., Afting, C., Romero-Brey, I., Bartenschlager, R., Fehring, L., Poppelreuther, M., Fuel-lekrug, J., 2019. Lipid droplet quantification based on iterative image processing. J. Lipid Res., 60, 1333–1344, https://doi.org/10.1194/jlr.D09284110.1194/jlr.D092841660213430926625 Search in Google Scholar

Frank, G., Härtl, T., Tschiersch, J., 1994. The pluviospectrometer: Classification of falling hydrometeors via digital image processing. Atmos. Res., 34, 1–4, 367–378. https://doi.org/10.1016/0169-8095 (94)90103-1 Search in Google Scholar

Hall, M.J., 1970. Use of the stain method in determining the drop size distribution of coarse liquid sprays. Trans. ASAE., 13, 33–37. https://doi.org/10.13031/2013.3852810.13031/2013.38528 Search in Google Scholar

Hu, B., Angeli, P., Matar, O.K., Lawrence, C.J., Hewitt, G.F., 2006. Evaluation of drop size distribution from chord length measurements. J. Agric. Biotech., 52, 3, 931–939. https://doi.org/10.1002/aic.1071410.1002/aic.10714 Search in Google Scholar

Illingworth, A.J., Stevens, C.J., 1987. An optical disdrometer for the measurement of raindrop size spectra in windy conditions. J. Atmos. Ocean Technol., 4, 411–421. https://doi.org/10.1175/1520-0426 Search in Google Scholar

Islam, T., Rico-Ramirez, M.A., Han, D., Srivastava, P.K., 2012. A Joss–Waldovgel disdrometer derived rainfall estimation study by collocated tipping bucket and rapid response rain gauges. Atmospheric Sci. Lett., 13, 2, 139–150. https://doi.org/10.1002/asl.37610.1002/asl.376 Search in Google Scholar

Jash, D., Resmi, E.A., Unnikrishnan, C.K., Sumesh, R.K., Sreekanth, T.S., Sukumar, N., Ramachandran, K.K., 2019. Variation in rain drop size distribution and rain integral parameters during southwest monsoon over a tropical station: An inter-comparison of disdrometer and micro rain radar. Atmos. Res., 217, 24–36. https://doi.org/10.1016/j.atmosres.2018.10.01410.1016/j.atmosres.2018.10.014 Search in Google Scholar

Jayawardena, A.W., Rezaur, R.B., 2000. Drop size distribution and kinetic energy load of rainstorms in Hong Kong. Hydrol. Process., 14, 6, 1069–1082.10.1002/(SICI)1099-1085(20000430)14:6<1069::AID-HYP997>3.0.CO;2-Q Search in Google Scholar

Jwa, M., Jin, H.G., Lee, J., Moon, S., Baik, J.J., 2020. Characteristics of raindrop size distribution in Seoul, South Korea according to rain and weather types. APJAS, 1–13. DOI: 10.1007/s13143-020-00219-w10.1007/s13143-020-00219-w Search in Google Scholar

Kathiravelu, G., Lucke, T., Nichols, P., 2016. Raindrop measurement techniques: a review. Water, 8, 29, 1–20. https://doi.org/10.3390/w801002910.3390/w8010029 Search in Google Scholar

Kavian, A., Mohammadi, M., Cerda, A., Fallah, M., Abdollahi, Z., 2018. Simulated raindrop’s characteristic measurements. A new approach of image processing tested under laboratory rainfall simulation. Catena, 167, 190–197. https://doi.org/10.1016/j.catena.2018.04.03410.1016/j.catena.2018.04.034 Search in Google Scholar

Khaledian, H., Shahoe, S.S., 2006. Evaluating of natural raindrop size distribution in Kordestan Province. J. Agric. Sci., 37, 6, 1093–1102. (In Persian.) Search in Google Scholar

King, B.A., Winward, T.W., Bjorneberg, D.L., 2014. Comparison of drop size and velocity measurements by a laser precipitation meter and low-speed photography or an agriculture sprinkler. Appl. Eng. Agric., 30, 3, 413–421. [eprints.nwisrl.ars.usda.gov/1543/1/1500.pdf]10.13031/aea.30.10417 Search in Google Scholar

Koh, K.U., Kim, J.Y., Lee, S.Y., 2001. Determination of in focus criteria and depth of field in image processing of spray particles. At. Sprays, 11, 4, 317–333. https://doi.org/10.1615/AtomizSpr.v11.i4.2010.1615/AtomizSpr.v11.i4.20 Search in Google Scholar

Kuthirummal, S., Nagahara, H., Changyin, Z., Nayar, S.K., 2010. Flexible depth of field photography. IEEE PAMI., 33, 1, 58–71. https://doi.org/10.1109/TPAMI.2010.6610.1109/TPAMI.2010.66 Search in Google Scholar

Lavergnat, J., Gole, P., 1998. A stochastic raindrop time distribution model. J. Appl. Meteorol., 37, 805–818. https://doi.org/10.1175/1520-0450(1998)037 Search in Google Scholar

Laws, J.Q., Parsons, D.A., 1943. The relation of raindrop size to intensity. Trans. American Geophysical Union, 26, 452–460. https://doi.org/10.1029/TR024i002p0045210.1029/TR024i002p00452 Search in Google Scholar

Lilley, M., Lovejoy, S., Desaulniers-Soucy, N., Schertzer, D., 2006. Multifractal large number of drops limit in rain. J. Hydrol., 328, 1–2, 20–37. https://doi.org/10.1016/j.jhydrol.2005.11.06310.1016/j.jhydrol.2005.11.063 Search in Google Scholar

Lima, J., Silva, V.P., Lima, M., Abrantes, J.B., Montenegro, A.A., 2015. Revisiting simple methods to estimate drop size distributions: a novel approach based on infrared thermography. J. Hydrol. Hydromech., 63, 3, 220–227. https://doi.org/10.1515/johh-2015-002510.1515/johh-2015-0025 Search in Google Scholar

Luo, C.G., Xiao, X., Martínez-Corral, M., Chen, C.W., Javidi, B., Wang, Q.H., 2013. Analysis of the depth of field of integral imaging displays based on wave optics. Opt. Express., 21, 25, 1–11. https://doi.org/10.1364/OE.21.03126310.1364/OE.21.03126324514700 Search in Google Scholar

Marshall, J.S., Palmer, W.M., 1948. The distribution of raindrops with size. JAMC, 5, 165–166. https://doi.org/10.1175/1520-0469 Search in Google Scholar

McIsaac, G.F., 1990. Apparent geographic and atmospheric influences on raindrop sizes and rainfall kinetic energy. J. Soil Water Conserv., 45, 663–666. http://www.jswconline.org/content/45/6/663.abstract10.1093/jhmas/45.4.663 Search in Google Scholar

Meshesha, D., Tsunekawa, A., Ayehu, N., 2017. Application of optical disdrometer to characterize simulated rainfall and measure drop size distribution. Geophys. Res. Abstr., 19, EGU2017-116. https://doi.org/10.1080/02626667.2018.152152210.1080/02626667.2018.1521522 Search in Google Scholar

Molina-Sanchis, I., Lázaro, R., Arnau-Rosalén, E., Calvo-Cases, A., 2016. Rainfall timing and runoff: the influence of the criterion for rain event separation. J. Hydrol. Hydromech., 64, 3, 226–236. https://doi.org/10.1515/johh-2016-002410.1515/johh-2016-0024 Search in Google Scholar

Oberdier, L.M., 1984. An instrumentation system to automate the analysis of fuel-spray images using computer vision. In: Tishkoff, J., Ingebo, R., Kennedy, J. (Eds.): Liquid Particle Size Measurement Techniques. ASTM International, West Conshohocken, PA, USA, pp. 123–136. https://doi.org/10.1520/STP32621S10.1520/STP32621S Search in Google Scholar

Perwass, C., Wietzke, L., 2012. Single lens 3D-camera with extended depth-of-field. In: Proc. XVII conference on Human Vision and Electronic Imaging, February 9, 2012. https://doi.org/10.1117/12.909882]10.1117/12.909882 Search in Google Scholar

Sadeghi, S.H., Abdollahi, Z., Khaledi Darvishan, A., 2013. Experimental comparison of some techniques for estimating natural raindrop size distribution on the south coast of the Caspian Sea, Iran. Hydrol. Sci. J., 58, 6, 1–9. https://doi.org/10.1080/02626667.2013.81491710.1080/02626667.2013.814917 Search in Google Scholar

Salles, C., Poesen, J., 1999. Performance of an optical spectro pluiviometer in measuring basic rain erosivity characteristics. J. Hydrol., 218, 142–156. https://doi.org/10.1016/S0022-1694(99)00031-110.1016/S0022-1694(99)00031-1 Search in Google Scholar

Salvador, R., Baustista-Capetillo, C., Burguete, J., Zapata, N., Serreta, A., Playán, E., 2009. A photographic method for drop characterization in agricultural sprinklers. Irrig. Sci., 27, 4, 307–317. https://doi.org/10.1007/s00271-009-0147-210.1007/s00271-009-0147-2 Search in Google Scholar

Sawant, S., Ghonge, P.A., 2015. Estimation of raindrop analysis using image processing. Int. J. Sci. Res., 4, 1, 1981–1986. https://www.ijsr.net/archive/v4i1/SUB15661.pdf Search in Google Scholar

Seginer, I., 1963. Water distribution from medium pressure sprinklers. Journal of the Irrigation and Drainage Division, 89, 2, 13–29. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=001293410.1061/JRCEA4.0000258 Search in Google Scholar

Serio, M.A., Carollo, F.G., Ferro, V., 2019. Raindrop size distribution and terminal velocity for rainfall erosivity studies. A review. J. Hydrol., 576, 210–228. https://doi.org/10.1016/j.jhydrol.2019.06.04010.1016/j.jhydrol.2019.06.040 Search in Google Scholar

Sijs, R., Kooij, S., Holterman, H.J., van de Zande, J., Bonn, D., 2021. Drop size measurement techniques for sprays: Comparison of image analysis, phase Doppler particle analysis, and laser diffraction. AIP Advances, 11, 1, Article Number: 015315. https://doi.org/10.1063/5.001866710.1063/5.0018667 Search in Google Scholar

Sheppard, B.E., Joe, P.I., 1994. Comparison of raindrop size distribution measurements by a Joss–Waldovgel disdrometer, a PMS 2DG spectrometer and a Poss Doppler radar. J. Atmos. Ocean Technol., 11, 874–887. https://doi.org/10.1175/1520-0426(1994)011 Search in Google Scholar

Solomon, K.H., Kincaid, D.C., Bezdek, J.C., 1985. Drop size distribution for irrigation spray nozzles. Trans. ASAE., 28, 6, 1966–1974. https://doi.org/10.13031/2013.3255010.13031/2013.32550 Search in Google Scholar

Sreekanth, T.S., Varikoden, H., Sukumar, N., Kumar, G.M., 2017. Microphysical characteristics of rainfall during different seasons over a coastal tropical station using disdrometer. Hydrol. Process., 31, 14, 2556–2565. https://doi.org/10.1002/hyp.1120210.1002/hyp.11202 Search in Google Scholar

Straka, J.M., 2009. Cloud and Precipitation Microphysics: Principles and Parameterizations. Cambridge University Press, 386 p.10.1017/CBO9780511581168 Search in Google Scholar

Steinmann, T., Casas, J., Braud, P., David, L., 2021. Coupled measurements of interface topography and three-dimensional velocity field of a free surface flow. Exp. Fluids, 62, 1, 1–16. https://doi.org/10.1007/s00348-020-03115-110.1007/s00348-020-03115-1 Search in Google Scholar

Sudheer, K.P., Panda, R.K., 2000. Digital image processing for determining drop sizes from irrigation spray nozzles. Agric. Water Manag., 45, 159–167. https://doi.org/10.1016/S0378-3774(99)00079-710.1016/S0378-3774(99)00079-7 Search in Google Scholar

Sulochana, Y., Rao, T.N., Sunilkumar, K., Chandrika, P., Raman, M.R., Rao, S.V.B., 2016. on the seasonal variability of raindrop size distribution and associated variations in reflectivity – rainrate relations at Tirupati, a tropical station. J. Atmos. Sol. Terr. Phys., 147, 98–105. https://doi.org/10.1016/j.jastp.2016.07.01110.1016/j.jastp.2016.07.011 Search in Google Scholar

Tang, Q., Xiao, H., Guo, C., Feng, L., 2014. Characteristics of the raindrop size distributions and their retrieved polarimetric radar parameters in Northern and Southern China. Atmos. Res., 135–136, 59–75. https://doi.org/10.1016/j.atmosres.2013.08.00310.1016/j.atmosres.2013.08.003 Search in Google Scholar

Thurai, M., Bringi, V. N., Petersen, W. A., 2009. Rain micro-structure retrievals using 2-D video disdrometer and C-band polarimetric radar. Adv. Geosci., 20, 13–18. https://doi.org/10.5194/adgeo-20-13-200910.5194/adgeo-20-13-2009 Search in Google Scholar

Thurai, M., Gatlin, P., Bringi, V., Petersen, W., Kennedy, P., Notaros, B., Carey L., 2017. Towards completing the raindrop size spectrum: Case studies involving 2D-video disdrometer, droplet spectrometer, and polarimetric radar measurements. J. Appl. Meteorol. Climatol., 56, 4, 877–896. https://doi.org/10.1175/JAMC-D-16-0304.110.1175/JAMC-D-16-0304.1 Search in Google Scholar

Wang, G., Zhou, R., Zhaxi, S., Liu, S., 2021. Raindrop size distribution measurements on the Southeast Tibetan Plateau during the STEP project. Atmos. Res., 249, Article Number: 105311. https://doi.org/10.1016/j.atmosres.2020.10531110.1016/j.atmosres.2020.105311 Search in Google Scholar

You, C.H., Lee, D.I., Kang, M.Y., Kim, H.J., 2016. Classification of rain types using drop size distributions and polarimetric radar: Case study of a 2014-flooding event in Korea. Atmos. Res., 181, 211–219. https://doi.org/10.1016/j.atmosres.2016.06.02410.1016/j.atmosres.2016.06.024 Search in Google Scholar

Yousefi, S., Sadeghi, S.H.R., Mirzaee, S., Van der Ploeg, M., Keesstra, S., Cerdà, A., 2018. Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran, J. Hydrol. Hydromech., 66, 1, 97–106. DOI: 10.1515/johh-2017-003410.1515/johh-2017-0034 Search in Google Scholar

Zhang, G., Vivekanandan, J., Brandes, E., 2001. A method for estimating rain rate and drop size distribution from polari-metric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 4, 830–841. https://doi.org/10.1109/36.91790610.1109/36.917906 Search in Google Scholar

eISSN:
1338-4333
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other