Cite

Anderson, T.W., Darling, D.A., 1954. A test of goodness of fit. Journal of the American Statistical Association, 49, 765-769.10.1080/01621459.1954.10501232Search in Google Scholar

Baráth, C., Ittzés, A., Ugrósdy, G., 1996. Biometry. (Biometria.) Mezőgazda Kiadó, Budapest. (In Hungarian.) Search in Google Scholar

Brevik, E.C., Fenton, T.E., 2002. The relative influence of soil water, clay, temperature, and carbonate minerals on soil electrical conductivity readings taken with an EM-38 along a Mollisol catena in central Iowa. Soil Survey Horizons, 43, 9-13.10.2136/sh2002.1.0009Search in Google Scholar

Cook, P.G., Walker, G.R., Buselli, G., Potts, I., Dodds, A.R., 1992. The application of electromagnetic techniques to groundwater recharge investigations. Journal of Hydrology, 130, 201-229.10.1016/0022-1694(92)90111-8Search in Google Scholar

Corwin, D.L., Lesch, S.M., 2003. Application of soil electrical conductivity to precision agriculture. Theory, principles and guidelines. Agron. J., 95, 455-471.10.2134/agronj2003.4550Search in Google Scholar

Corwin, D.L., Lesch, S.M., 2005. Apparent electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46, 11-43.10.1016/j.compag.2004.10.005Search in Google Scholar

Corwin, D.L., Rhoades, J.D., 1982. An improved technique for determining soil electrical conductivity-depth relations from above-ground electromagnetic measurements. Soil Sci. Soc. Am. J., 46, 517-520.10.2136/sssaj1982.03615995004600030014xSearch in Google Scholar

Corwin, D.L., Rhoades, J.D., 1984. Measurement of inverted electrical conductivity profiles using electromagnetic induction. Soil Sci. Soc. Am. J., 48, 288-291.10.2136/sssaj1984.03615995004800020011xSearch in Google Scholar

Dean, R.B., Dixon, W.J., 1951. Simplified statistics for small numbers of observations. Anal. Chem., 1951, 23(4), 636-638.10.1021/ac60052a025Search in Google Scholar

Doležal, F., Matula, S., Barradas, J.M.M., 2012. Improved horizontal installation of large soil moisture content sensors and interpretation of their readings in terms of preferential flow. J. Hydrol. Hydromech., 60, 2012, 4, 333-338.10.2478/v10098-012-0029-9Search in Google Scholar

Ellsbury, M.M., Woodson, W.D., Malo, D.D., Clay, D.E., Carlson, C.G., Clay, S.A., 1999. Spatial variability in corn rootworm distribution in relation to spatially variable soil factors and crop condition. In: Robert, P.C., Rust, R.H., Larson, W.E. (Eds.), Proceedings of the Fourth International Conference on Precision Agriculture, St. Paul, MN, 19-22July 1998. ASA-CSSA-SSSA, Madison, WI, USA, 523-533.10.2134/1999.precisionagproc4.c46Search in Google Scholar

Fitterman, D.V., Stewart, M.T., 1986. Transient electromagnetic sounding for groundwater. Geophysics, 51, 995-1005.10.1190/1.1442158Search in Google Scholar

Grubbs, F., 1969. Procedures for detecting outlying observations in samples. Technometrics, 11(1), 1-21.10.1080/00401706.1969.10490657Search in Google Scholar

Halvorson, A.D., Rhoades, J.D., 1976. Field mapping soil conductivity to delineate dryland seeps with four electrode techniques. Soil Sci. Soc. Am. J., 44, 571-575.10.2136/sssaj1976.03615995004000040032xSearch in Google Scholar

Justel, A., Peña, D., Zamar, R., 1997. A multivariate Kolmogorov- Smirnov test of goodness of fit. Statistics and Probability Letters, 35(3), 251-259.10.1016/S0167-7152(97)00020-5Search in Google Scholar

Kaffka, S.R., Lesch, S.M., Bali, K.M., Corwin, D.L., 2005. Site-specific management in salt-affected sugar beet fields using electromagnetic induction. Comput. Electron. Agric., 46, 329-350.10.1016/j.compag.2004.11.013Search in Google Scholar

Kravchenko, A.N., Bullock, D.G., 2000. Correlation of corn and soybean gain yield with topography and soil properties. Agron. J., 92, 75-83.10.2134/agronj2000.92175xSearch in Google Scholar

Milics, G., 2013. Mapping soil properties for precision agriculture. Növénytermelés, 62, Suppl., 405-408.Search in Google Scholar

Milics, G., Balla, I., Deákvári, J., Jolánkai, M., Nagy, V., Stekauerová, V., Neményi, M., 2012. Soil moisture and soil electrical conductivity measurements in site - specific agriculture. Pollution and Water Resources Columbia University Seminar Series, XLI, 219-231.Search in Google Scholar

Milne, B.T., 1991. Heterogeneity as a multiscale characteristic of landscapes. In: Kolasa, J., Pickett, S.T.A. (Eds.). Ecological heterogeneity. Ecological studies., 86, New York, NY., Springer-Verlag, 69-84.10.1007/978-1-4612-3062-5_4Search in Google Scholar

Paraskevas, C., Georgiu, P., Ilias, A., Panoras, A., Babajimopoulos, C., 2012. Calibration equations for two capacitance water content probes. Int. Agrophys., 2012, 26, 285-293.10.2478/v10247-012-0041-7Search in Google Scholar

Rhoades, J.D., Corwin, D.L., Lesch, S.M., 1999. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In: Corwin, D.L., Loague, K., Ellsworth, T.R. (Eds.), Assessment of non-point source pollution in the vadose zone. Geophysical Monograph 108, American Geophysical Union, Washington, DC, USA, 197-215.10.1029/GM108p0197Search in Google Scholar

Shah, P.H., Shingh, D.N., 2005. Generalized Archie’s law for estimation of soil electrical conductivity. Journal of ASTM International, 2(5), 1-20.10.1520/JAI13087Search in Google Scholar

Sharma, B.D., Kar, S., Sarkar, S., 1997. Calibration of a water uptake simulation model under varying soil moisture regime and nitrogen level for wheat crop. Agricultural and Forest Meteorology, 83(1-2), 135-146.10.1016/S0168-1923(96)02341-6Search in Google Scholar

Williams, B.G., Hoey, D., 1987. The use of electromagnetic induction to detect the spatial variability of salt and clay contents of soils. Aust. J. Soil Res., 25, 21-27. 10.1071/SR9870021Search in Google Scholar

ISSN:
0042-790X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other