1. bookVolumen 12 (2022): Edición 4 (October 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Detecting Anomalies in Advertising Web Traffic with the Use of the Variational Autoencoder

Publicado en línea: 29 Oct 2022
Volumen & Edición: Volumen 12 (2022) - Edición 4 (October 2022)
Páginas: 255 - 256
Recibido: 02 Apr 2022
Aceptado: 12 Oct 2022
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] Recaptcha https://www.google.com/recaptcha/about/ Search in Google Scholar

[2] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. “Deep learning”. MIT press, 2016. Search in Google Scholar

[3] Zhou, Chong, and Randy C. Paffenroth. “Anomaly detection with robust deep autoencoders.” Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017.10.1145/3097983.3098052 Search in Google Scholar

[4] Farahnakian, Fahimeh, and Jukka Heikkonen. “A deep auto-encoder based approach for intrusion detection system.” 2018 20th International Conference on Advanced Communication Technology (ICACT). IEEE, 2018.10.23919/ICACT.2018.8323687 Search in Google Scholar

[5] Q.P.Nguyen i in., GEE: A Gradient-based Explainable Variational Autoencoder for Network Anomaly Detection, 2019.10.1109/CNS.2019.8802833 Search in Google Scholar

[6] https://www.emarketer.com/content/digital-ad-fraud-2019, 2019 Search in Google Scholar

[7] Barker S., “Future Digital Advertising, Artificial Intelligence & Advertising Fraud 2019-2023”, Juniper Research, 2019 Search in Google Scholar

[8] Xiong, Yihui, and Renguang Zuo. “Recognition of geochemical anomalies using a deep autoencoder network.” Computers & Geosciences 86 (2016): 75-82.10.1016/j.cageo.2015.10.006 Search in Google Scholar

[9] Gabryel, Marcin, Konrad Grzanek, and Yoichi Hayashi. “Browser fingerprint coding methods increasing the effectiveness of user identification in the web traffic.” Journal of Artificial Intelligence and Soft Computing Research 10 (2020).10.2478/jaiscr-2020-0016 Search in Google Scholar

[10] Gabryel, Marcin, et al. “Decision making support system for managing advertisers by ad fraud detection.” Journal of Artificial Intelligence and Soft Computing Research 11 (2021).10.2478/jaiscr-2021-0020 Search in Google Scholar

[11] Kim, Taegong, and Cheong Hee Park. “Anomaly Pattern Detection in Streaming Data Based on the Transformation to Multiple Binary-Valued Data Streams.” Journal of Artificial Intelligence and Soft Computing Research 12.1 (2022): 19-27.10.2478/jaiscr-2022-0002 Search in Google Scholar

[12] Brunner, Csaba, Andrea K˝o, and Szabina Fodor. “An Autoencoder-Enhanced Stacking Neural Network Model for Increasing the Performance of Intrusion Detection.” Journal of Artificial Intelligence and Soft Computing Research 12.2 (2022): 149-163.10.2478/jaiscr-2022-0010 Search in Google Scholar

[13] Santhosh, Kelathodi Kumaran, et al.”Vehicular trajectory classification and traffic anomaly detection in videos using a hybrid CNN-VAE Architecture”. IEEE Transactions on Intelligent Transportation Systems, 2021. Search in Google Scholar

[14] Wang, Tian, et al. Generative neural networks for anomaly detection in crowded scenes. IEEE Transactions on Information Forensics and Security, 2018, 14.5: 1390-1399.10.1109/TIFS.2018.2878538 Search in Google Scholar

[15] Zhou, Yu, et al. VAE-based Deep SVDD for anomaly detection”. Neurocomputing, 2021, 453: 131-140.10.1016/j.neucom.2021.04.089 Search in Google Scholar

[16] An, Jinwon; Cho, Sungzoon. Variational autoen-coder based anomaly detection using reconstruction probability”. Special Lecture on IE, 2015, 2.1: 1-18. Search in Google Scholar

[17] Pang, Guansong, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. “Deep Learning for Anomaly Detection: A Review.” ACM Computing Surveys (CSUR) 54, no. 2 (2021): 1–38.10.1145/3439950 Search in Google Scholar

[18] Kingma, Diederik P.; Welling, Max. Auto-encoding variational Bayes”. arXiv preprint arXiv:1312.6114, 2014. Search in Google Scholar

[19] Tadeusz Inglot, Information Theory in the mathematical Statistics”, Mathematica Applicanda”, 42 (1), 2014, pp. 115–17410.14708/ma.v42i1.521 Search in Google Scholar

[20] Gabryel, Marcin, Lada, Dawid, Kocic, Milan “Autoencoder Neural Network for Detecting Non-human Web Traffic”, ICAISC 2022, LNCS, Springer, accepted for printing. Search in Google Scholar

[21] Zhao, Fangzhen, et al. “A Uniform Framework for Anomaly Detection in Deep Neural Networks.” Neural Processing Letters (2022): 1-22. Search in Google Scholar

[22] J. Bilski, B. Kowalczyk, A. Marjański, M. Gandor, J. ˙Zurada, “A Novel Fast Feedforward Neural Networks Training Algorithm”, Journal of Artificial Intelligence and Soft Computing Research, Vol.11, No. 4, 287-306 (2021), DOI: 10.2478/jaiscr-2021-001710.2478/jaiscr-2021-0017 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo