[
Azhariyah AS, Pradyasti A, Bismo S. (2018). Preparation and characterization of copper oxide catalyst with activated carbon support for ozone decomposition in industrial environment. IOP Conf. Series: Earth and Environmental Science 105: 012012.
]Search in Google Scholar
[
Azhariyah AS, Pradyasti A, Dianty AG, Bismo S. (2018). Comparative study of activated carbon, natural zeolite, and green sand supports for CuOx and ZnO sites as ozone decomposition catalyst. IOP Conf. Series: Earth and Environmental Science 334: 012075.
]Search in Google Scholar
[
Bai B, Li J, Hao J. (2015). 1D–MnO2, 2D–MnO2 and 3D–MnO2 for low–temperature oxidation of ethanol. Appl Catal B Environ 164: 241–250.
]Search in Google Scholar
[
Batakliev T, Rakovsky S, Zaikov G.E. (2008). Investigation of metal oxide catalyst in ozone decomposition. Oxidation Communications 31 (1): 145–150.
]Search in Google Scholar
[
Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov GE. (2014). Ozone decomposition. Interdiscip Toxicol 7(2): 47–59.
]Search in Google Scholar
[
Batakliev T, Georgiev V, Karakashkova P, Gabrovska M, Nikolova D, Anachkov M, Rakovsky S. (2017). Gas phase ozone decomposition over co-precipitated Ni-based catalysts. Bulg Chem Commun 49(Special Issue L): 24–29.
]Search in Google Scholar
[
Batakliev T, Tyuliev G, Georgiev V, Eliyas A, Anachkov M, Rakovsky S. (2015). Ozone decomposition reaction over α-alumina supported silver catalyst: comparative study of catalytic surface reactivity. Ozone Sci Eng 37: 216–220.
]Search in Google Scholar
[
Boevski I, Genov K, Boevska N, Milenova K, Batakliev T, Georgiev V, Nikolov P, Sarker DK. (2011). Low temperature ozone decomposition on Cu2+, Zn2+ and Mn2+ – exchanged clinoptilolite. CR ACAD BULG SCI 64(1): 33–38.
]Search in Google Scholar
[
Bianchi CL, Pirola C, Ragaini V, Selli E. (2006). Mechanism and effi ciency of atrazine degradation under combined oxidation processes. Appl Catal B Environ 64: 131–138.
]Search in Google Scholar
[
Bloh JZ, Folli A, Macphee DE. (2014). Photocatalytic NOx abatement: why the selectivity matters. RSC Adv 4: 45726–45734.
]Search in Google Scholar
[
Boppana VBR, Yusuf S, Hutchings GS, Jiao F. (2013). Nanostructured alkaline– cation–containing δ–MnO2 for photocatalytic water oxidation. Adv Funct Mater 23: 878–884.
]Search in Google Scholar
[
Chen C, Zhao B, Weschler CJ. (2012). Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in US communities. Environ Health Perspect 120: 235–240.
]Search in Google Scholar
[
Chen L, Ondarts M, Outin J, Gonthier Y, Gonze E. (2018). Catalytic decomposition performance for O3 and NO2 in humid indoor air on a MnOx/Al2O3 catalyst modified by a cost-effective chemical grafting method. J Environ Sci 74: 58–70.
]Search in Google Scholar
[
Claudia C, Mincione E, Saladino R, Nicoletti R. (1994). Oxidation of Substituted 2-Thiouracils and Pyramidine-2-Thione with Ozone and 3,3-Dimethyl-1,2-Dioxiran. Tetrahedron 50(10): 3259–3272.
]Search in Google Scholar
[
Deninno MP, McCarthy KE. (1997). The C-14 radiolabelled synthesis of the cholesterol absorption inhibitor CP-148,623. A novel method for the incorporation of a C-14 label in enones. Tetrahedron 53(32): 11007–11020.
]Search in Google Scholar
[
Dong Y, Kun L, Jiang P, Wang G, Miao H, Zhang J, Zhang C. (2014). Simple Hydrothermal Preparation of Alpha–, Beta–, and Gamma–MnO2 and Phase Sensitivity in Catalytic Ozonation. RSC Adv. 4(74): 39167–39173.
]Search in Google Scholar
[
Einaga H, Harada M, Futamura S. (2005). Structural Changes in Alumina-supported Manganese Oxides during Ozone Decomposition. Chem. Phys. Lett. 408: 377.
]Search in Google Scholar
[
Esmaeilirad A, Rukosuyev MV, Jun MBG, Van Veggel FCJM. (2016). A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces. Surf. Coat. Technol. 285: 227–234.
]Search in Google Scholar
[
Gao E, Wang W. (2013). Role of graphene on the surface chemical reactions of BiPO4–rGO with low OH–related defects, Nano 5: 11248–11256.
]Search in Google Scholar
[
Genuino HC, Seraji MS, Meng YT, Valencia D, Suib SL. Combined experimental and computational study of CO oxidation promoted by Nb in manganese oxide octahedral molecular sieves. (2015). Appl Catal B Environ 163: 361–369.
]Search in Google Scholar
[
Ghasemi Z, Younesi H, Zinatizadeh AA. (2016). Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology. Chemosphere 159: 552–564.
]Search in Google Scholar
[
Gong S, Chen J, Wu X, Nan N, Chen Y. (2018). In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catal Commun 106: 25–29.
]Search in Google Scholar
[
González-Elipe AR, Soria J, Munuera G. (1981). Photo-decomposition of ozone on TiO2. Zeitschrift Für Phys Chem 126: 251–257.
]Search in Google Scholar
[
Hadavifar M, Younesi H, Zinatizadeh AA, Mahdad F, Li Q, Ghasemi Z. 2016. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries. J Environ Manag 170: 28–36.
]Search in Google Scholar
[
Hata K, Horiuchi M, Takasaki T. (1988). Preparation of high performance metal catalyst. Jap Pat CA, 108, 61754u.
]Search in Google Scholar
[
Irie H, Miura S, Kamiya K, Hashimoto K. (2008). Effi cient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett 457: 202–205.
]Search in Google Scholar
[
Jia JB, Zhang PY, Chen L. (2016). Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B Environ 189: 210–218.
]Search in Google Scholar
[
Jia J, Zhang P, Chen L. (2016). The Effect of Morphology of Α–MnO2 on Catalytic Decomposition of Gaseous Ozone. Catal Sci Technol 6(15): 5841–7.
]Search in Google Scholar
[
Jia J, Zhang P. (2018). Catalytic Decomposition of Airborne Ozone by MnCO3 and its Mechanism, Ozone Sci Eng 40(1): 21–28.
]Search in Google Scholar
[
Jõgi I, Erme K, Raud J, Laan M. (2016). Oxidation of NO by ozone in the presence of TiO2 catalyst, Fuel 173: 45–51.
]Search in Google Scholar
[
Kobayashi M, Mitsui M, Kiichiro K. (1988). Chemical composition of metal oxide catalysts. Jap Pat CA, 109, 175615a.
]Search in Google Scholar
[
Kong L, Zhu J, Zhang C. (2014). Catalytic Ozone Decomposition in a Gas-Solids Circulating Fluidized-Bed Riser. Chem Eng Technol 37 (3): 435–444.
]Search in Google Scholar
[
Kujawa J, Cerneaux S, Kujawski W. (2015). Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervapo-ration. Chem Eng J 260: 43–54.
]Search in Google Scholar
[
Lai D, Karava P, Chen Q. (2015). Study of outdoor ozone penetration into buildings through ventilation and infiltration. Build Environ 93: 112–118.
]Search in Google Scholar
[
Larachi F, Pierre J, Adnot A, Bernis A. (2002). Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl Surf Sci 195: 236–250.
]Search in Google Scholar
[
Li X, Chen W, Ma L, Wang H, Fan J. (2018). Industrial wastewater advanced treatment via catalytic ozonation with a Fe-based catalyst, Chemosphere 195: 336–343.
]Search in Google Scholar
[
Liu G, Yin L-C, Wang J, Niu P, Zhen C, Xie Y, Cheng H–M. (2012). A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5: 9603.
]Search in Google Scholar
[
Liu Y, Yang W, Zhang P, Zhang J. (2018). Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition. Appl Surf Sci 442: 640–649.
]Search in Google Scholar
[
Lunin VV, Popovich MP, Tkachenko SN. (1998). Physical Chemistry of Ozone. Moscow State University Publisher, 480 p. [in Russian].
]Search in Google Scholar
[
Ma J, Sui MH, Chen ZL, Li NW. (2004). Degradation of Refractory Organic Pollutants by Catalytic Ozonation—Activated Carbon and Mn-Loaded Activated Carbon as Catalysts. Ozone Sci Eng 26(1): 3–10.
]Search in Google Scholar
[
Ma J, Wang C, Hong H. (2017). Transition metal doped cryptomelane–type manganese oxide catalysts for ozone decomposition. Appl Catal B Environ 201: 503–510.
]Search in Google Scholar
[
Mohamed EF, Awad G, Zaitan H, Andriantsiferana C, Manero M–H. (2018). Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition. Environ Technol 39(7): 878–886.
]Search in Google Scholar
[
Mok YS, Yoon EY. (2006). Effect of Ozone Injection on the Catalytic Reduction of Nitrogen Oxides. Ozone Sci Eng 28: 105–110.
]Search in Google Scholar
[
Mortier J. (1982). Compilation of extra framework sites in zeolites, Guildford: Butterworth Sci. Ltd., 67 p.
]Search in Google Scholar
[
Nishikawa M, Hiura S, Mitani Y, Nosaka Y. (2013). Enhanced photocatalytic activity of BiVO4 by co-grafting of metal ions and combining with CuBi2O4. J Photochem Photobiol A Chem 262: 52–56.
]Search in Google Scholar
[
Oohachi K, Fukutake T, Sunao T. (1993). Method for synthesis of iron oxides. Jap Pat CA, 119, 119194g.
]Search in Google Scholar
[
Oputu O, Chowdhury M, Nyamayaro K, Fatoki O, Fester V. (2015). Catalytic activities of ultra-small beta-FeOOH nanorods in ozonation of 4-chlorophenol. J Environ Sci 35: 83–90.
]Search in Google Scholar
[
Oyama ST. (2000). Chemical and Catalytic Properties of Ozone. Catal Rev Sci Eng 42: 279.
]Search in Google Scholar
[
Pahalagedara LR, Dharmarathna S, King’ondu CK, Pahalagedara MN, Meng YT, Kuo CH, Suib SL. (2014). Microwave-Assisted Hydrothermal Synthesis of α-MnO2: Lattice Expansion via Rapid Temperature Ramping and Framework Substitution. J Phys Chem C 118: 20363–20373.
]Search in Google Scholar
[
Patzsch J, Bloh J. (2018). Improved photocatalytic ozone abatement over transition metal-grafted titanium dioxide. Catal Today 300: 2–11.
]Search in Google Scholar
[
Perry RH, Green D. (1989). Perry‘s Chemical Engineer‘s Handbook, McGraw-Hill, New York, 147 p.
]Search in Google Scholar
[
Pradyasti A, Azhariyah AS, Karamah EF, Bismo S. (2018). Preparation of zinc oxide catalyst with activated carbon support for ozone decomposition. IOP Conf Ser Earth Environ Sci 105: 012013.
]Search in Google Scholar
[
Qi F, Chu W, Xu B. (2016). Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe2O4 and its precursor: Surface properties, intermediates and reaction mechanisms. Chem Eng J 284: 28–36.
]Search in Google Scholar
[
Radhakrishnan R, Oyama ST, Chen J, Asakura A. (2001). Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide. J Phys Chem B 105(19): 4245–4253.
]Search in Google Scholar
[
Rakitskaya T, Truba A, Radchenko E, Golub A. (2018). Mono- and Bimetallic Complexes of Mn(II), Co(II), Cu(II), AND Zn(II) with Schiff Bases Immobilized on Nanosilica as Catalysts in Ozone Decomposition Reaction, Chem Chem Technol 12(1): 1–6.
]Search in Google Scholar
[
Rakyts’ka T., Pidmazko A., Golub O. (2004). Compositions Based on Pl(II) and Cu(II) Compounds, Halide Ions, and Bentonite for Ozone Decomposition. Ukr Khim Zh 70: 16 [in Ukrainians].
]Search in Google Scholar
[
Rakovsky SK, Zaikov GE. (2007). Kinetic and mechanism of ozone reactions with organic and polymeric compounds in liquid phase – 2nd edition, Nova Sci. Publ., Inc. New York.
]Search in Google Scholar
[
Reed C, Xi Y, Oyama ST. (2005). Distinguishing between reaction intermediates and spectators: a kinetic study of acetone oxidation using ozone on a silica-supported manganese oxide catalyst. J Catal 235: 378–392.
]Search in Google Scholar
[
Ren Y, Lai B. (2016). Comparative study on the characteristics, operational life and reactivity of Fe/Cu bimetallic particles prepared by electroless and displacement plating process. RSC Adv 6: 58302–58314.
]Search in Google Scholar
[
Ren Y, Li J, Peng J, Ji F, Lai B. (2018). Strengthening the catalytic activity for ozonation of Cu/Al2O3 by an electroless plating−calcination process. Ind Eng Chem Res 57: 1815–1825.
]Search in Google Scholar
[
Qi F, Xu B, Chen Z, Zhang L, Zhang P, Sun D. (2010). Mechanism investigation of catalyzed ozonation of 2-methylisoborneol in drinking water over aluminum (hydroxyl) oxides: Role of surface hydroxyl group. Chem Eng J 165: 490–499.
]Search in Google Scholar
[
Skalska K, Miller JS, Wilk M, Ledakowicz S. (2012). Nitrogen Oxides Ozonation as a Method for NOx Emission Abatement. Ozone Sci Eng 34: 252–258.
]Search in Google Scholar
[
Skoumal M, Cabot PL, Centellas F, Arias C, Rodriguez RM, Garrido JA, Brillas E. (2006). Appl Catal B Environ 66: 228–240.
]Search in Google Scholar
[
Staehelin J, Hoigne J. (1982). Decomposition of ozone in water–rate of initiation by hydroxide ions and hydrogen–peroxide. Environ Sci Technol 16: 676–681.
]Search in Google Scholar
[
Su D, Ahn H–J, Wang G. (2013). Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 1: 4845–4850.
]Search in Google Scholar
[
Sun M, Yu L, Ye F, Diao GQ, Yu Q, Hao ZF, Zheng YY, Yuan LX. (2013). Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem. Eng. J. 220: 320–327.
]Search in Google Scholar
[
Tchihara S. (1988). Cobalt catalyst for decomposition of ozone. Jap Pat CA, 108, 192035h.
]Search in Google Scholar
[
Terui S, Sadao K, Sano N, Nichikawa T. (1990). Synthesis of supported silver oxide catalysts. Jap Pat CA, 112, 20404p.
]Search in Google Scholar
[
Terui S, Sadao K, Sano N, Nichikawa T. (1991). Investigation on Pd and Rh catalysts supported on colloidal polyurethane for ozone destruction. Jap Pat CA, 114, 108179b.
]Search in Google Scholar
[
Tidahy HL, Siffert S, Wyrwalski F, Lamonier J–F, Aboukaïs A. (2007). Catalytic activity of copper and palladium based catalysts for toluene total oxidation. Catal Today 119: 317–320.
]Search in Google Scholar
[
Wang C, Ma J, Liu F, He H, Zhang R. (2015). The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS–2) Catalysts. J Phys Chem C 119: 23119–23126.
]Search in Google Scholar
[
Wang M, Zhang P, Li J, Jiang C. (2014). The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chinese J Catal 35: 335–341.
]Search in Google Scholar
[
Wiley-VCH. (1991). Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley and Sons, New York.
]Search in Google Scholar
[
Wu Z, Zhang G, Zhang R, Yang F. (2018). Insights into Mechanism of Catalytic Ozonation over Practicable Mesoporous Mn-CeOx/γ-Al2O3 Catalysts. Ind Eng Chem Res 57: 1943–1953.
]Search in Google Scholar
[
Xi Y, Reed C, Lee Y–K, Oyama ST. (2005). Acetone oxidation using ozone on manganese oxide catalysts. J Phys Chem B 109: 17587–17596.
]Search in Google Scholar
[
Zavadskii AV, Kireev SG, Muhin VM, Tkachenko SN, Chebkin VV, Klushin VN, Teplyakov DE. (2002). Thermal Treatment Influence over Hopcalite Activity in Ozone Decomposition. J Phys Chem 76: 2278 [in Russian].
]Search in Google Scholar
[
Zhang Y, Chen M, Zhang Z, Jiang Z, Shangguan W, Einaga H. (2019). Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catal Today 327: 323–333.
]Search in Google Scholar
[
Zhao L, Ma J, Sun ZZ. (2008). Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution. Appl Catal B Environ 79: 244–253.
]Search in Google Scholar