Uneingeschränkter Zugang

Ozone decomposition – state of the art and new approaches

, ,  und   
27. Jan. 2025

Zitieren
COVER HERUNTERLADEN

Azhariyah AS, Pradyasti A, Bismo S. (2018). Preparation and characterization of copper oxide catalyst with activated carbon support for ozone decomposition in industrial environment. IOP Conf. Series: Earth and Environmental Science 105: 012012. Search in Google Scholar

Azhariyah AS, Pradyasti A, Dianty AG, Bismo S. (2018). Comparative study of activated carbon, natural zeolite, and green sand supports for CuOx and ZnO sites as ozone decomposition catalyst. IOP Conf. Series: Earth and Environmental Science 334: 012075. Search in Google Scholar

Bai B, Li J, Hao J. (2015). 1D–MnO2, 2D–MnO2 and 3D–MnO2 for low–temperature oxidation of ethanol. Appl Catal B Environ 164: 241–250. Search in Google Scholar

Batakliev T, Rakovsky S, Zaikov G.E. (2008). Investigation of metal oxide catalyst in ozone decomposition. Oxidation Communications 31 (1): 145–150. Search in Google Scholar

Batakliev T, Georgiev V, Anachkov M, Rakovsky S, Zaikov GE. (2014). Ozone decomposition. Interdiscip Toxicol 7(2): 47–59. Search in Google Scholar

Batakliev T, Georgiev V, Karakashkova P, Gabrovska M, Nikolova D, Anachkov M, Rakovsky S. (2017). Gas phase ozone decomposition over co-precipitated Ni-based catalysts. Bulg Chem Commun 49(Special Issue L): 24–29. Search in Google Scholar

Batakliev T, Tyuliev G, Georgiev V, Eliyas A, Anachkov M, Rakovsky S. (2015). Ozone decomposition reaction over α-alumina supported silver catalyst: comparative study of catalytic surface reactivity. Ozone Sci Eng 37: 216–220. Search in Google Scholar

Boevski I, Genov K, Boevska N, Milenova K, Batakliev T, Georgiev V, Nikolov P, Sarker DK. (2011). Low temperature ozone decomposition on Cu2+, Zn2+ and Mn2+ – exchanged clinoptilolite. CR ACAD BULG SCI 64(1): 33–38. Search in Google Scholar

Bianchi CL, Pirola C, Ragaini V, Selli E. (2006). Mechanism and effi ciency of atrazine degradation under combined oxidation processes. Appl Catal B Environ 64: 131–138. Search in Google Scholar

Bloh JZ, Folli A, Macphee DE. (2014). Photocatalytic NOx abatement: why the selectivity matters. RSC Adv 4: 45726–45734. Search in Google Scholar

Boppana VBR, Yusuf S, Hutchings GS, Jiao F. (2013). Nanostructured alkaline– cation–containing δ–MnO2 for photocatalytic water oxidation. Adv Funct Mater 23: 878–884. Search in Google Scholar

Chen C, Zhao B, Weschler CJ. (2012). Assessing the influence of indoor exposure to “outdoor ozone” on the relationship between ozone and short-term mortality in US communities. Environ Health Perspect 120: 235–240. Search in Google Scholar

Chen L, Ondarts M, Outin J, Gonthier Y, Gonze E. (2018). Catalytic decomposition performance for O3 and NO2 in humid indoor air on a MnOx/Al2O3 catalyst modified by a cost-effective chemical grafting method. J Environ Sci 74: 58–70. Search in Google Scholar

Claudia C, Mincione E, Saladino R, Nicoletti R. (1994). Oxidation of Substituted 2-Thiouracils and Pyramidine-2-Thione with Ozone and 3,3-Dimethyl-1,2-Dioxiran. Tetrahedron 50(10): 3259–3272. Search in Google Scholar

Deninno MP, McCarthy KE. (1997). The C-14 radiolabelled synthesis of the cholesterol absorption inhibitor CP-148,623. A novel method for the incorporation of a C-14 label in enones. Tetrahedron 53(32): 11007–11020. Search in Google Scholar

Dong Y, Kun L, Jiang P, Wang G, Miao H, Zhang J, Zhang C. (2014). Simple Hydrothermal Preparation of Alpha–, Beta–, and Gamma–MnO2 and Phase Sensitivity in Catalytic Ozonation. RSC Adv. 4(74): 39167–39173. Search in Google Scholar

Einaga H, Harada M, Futamura S. (2005). Structural Changes in Alumina-supported Manganese Oxides during Ozone Decomposition. Chem. Phys. Lett. 408: 377. Search in Google Scholar

Esmaeilirad A, Rukosuyev MV, Jun MBG, Van Veggel FCJM. (2016). A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces. Surf. Coat. Technol. 285: 227–234. Search in Google Scholar

Gao E, Wang W. (2013). Role of graphene on the surface chemical reactions of BiPO4–rGO with low OH–related defects, Nano 5: 11248–11256. Search in Google Scholar

Genuino HC, Seraji MS, Meng YT, Valencia D, Suib SL. Combined experimental and computational study of CO oxidation promoted by Nb in manganese oxide octahedral molecular sieves. (2015). Appl Catal B Environ 163: 361–369. Search in Google Scholar

Ghasemi Z, Younesi H, Zinatizadeh AA. (2016). Preparation, characterization and photocatalytic application of TiO2/Fe-ZSM-5 nanocomposite for the treatment of petroleum refinery wastewater: optimization of process parameters by response surface methodology. Chemosphere 159: 552–564. Search in Google Scholar

Gong S, Chen J, Wu X, Nan N, Chen Y. (2018). In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catal Commun 106: 25–29. Search in Google Scholar

González-Elipe AR, Soria J, Munuera G. (1981). Photo-decomposition of ozone on TiO2. Zeitschrift Für Phys Chem 126: 251–257. Search in Google Scholar

Hadavifar M, Younesi H, Zinatizadeh AA, Mahdad F, Li Q, Ghasemi Z. 2016. Application of integrated ozone and granular activated carbon for decolorization and chemical oxygen demand reduction of vinasse from alcohol distilleries. J Environ Manag 170: 28–36. Search in Google Scholar

Hata K, Horiuchi M, Takasaki T. (1988). Preparation of high performance metal catalyst. Jap Pat CA, 108, 61754u. Search in Google Scholar

Irie H, Miura S, Kamiya K, Hashimoto K. (2008). Effi cient visible light-sensitive photocatalysts: grafting Cu(II) ions onto TiO2 and WO3 photocatalysts. Chem Phys Lett 457: 202–205. Search in Google Scholar

Jia JB, Zhang PY, Chen L. (2016). Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Appl Catal B Environ 189: 210–218. Search in Google Scholar

Jia J, Zhang P, Chen L. (2016). The Effect of Morphology of Α–MnO2 on Catalytic Decomposition of Gaseous Ozone. Catal Sci Technol 6(15): 5841–7. Search in Google Scholar

Jia J, Zhang P. (2018). Catalytic Decomposition of Airborne Ozone by MnCO3 and its Mechanism, Ozone Sci Eng 40(1): 21–28. Search in Google Scholar

Jõgi I, Erme K, Raud J, Laan M. (2016). Oxidation of NO by ozone in the presence of TiO2 catalyst, Fuel 173: 45–51. Search in Google Scholar

Kobayashi M, Mitsui M, Kiichiro K. (1988). Chemical composition of metal oxide catalysts. Jap Pat CA, 109, 175615a. Search in Google Scholar

Kong L, Zhu J, Zhang C. (2014). Catalytic Ozone Decomposition in a Gas-Solids Circulating Fluidized-Bed Riser. Chem Eng Technol 37 (3): 435–444. Search in Google Scholar

Kujawa J, Cerneaux S, Kujawski W. (2015). Highly hydrophobic ceramic membranes applied to the removal of volatile organic compounds in pervapo-ration. Chem Eng J 260: 43–54. Search in Google Scholar

Lai D, Karava P, Chen Q. (2015). Study of outdoor ozone penetration into buildings through ventilation and infiltration. Build Environ 93: 112–118. Search in Google Scholar

Larachi F, Pierre J, Adnot A, Bernis A. (2002). Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl Surf Sci 195: 236–250. Search in Google Scholar

Li X, Chen W, Ma L, Wang H, Fan J. (2018). Industrial wastewater advanced treatment via catalytic ozonation with a Fe-based catalyst, Chemosphere 195: 336–343. Search in Google Scholar

Liu G, Yin L-C, Wang J, Niu P, Zhen C, Xie Y, Cheng H–M. (2012). A red anatase TiO2 photocatalyst for solar energy conversion. Energy Environ Sci 5: 9603. Search in Google Scholar

Liu Y, Yang W, Zhang P, Zhang J. (2018). Nitric acid-treated birnessite-type MnO2: An efficient and hydrophobic material for humid ozone decomposition. Appl Surf Sci 442: 640–649. Search in Google Scholar

Lunin VV, Popovich MP, Tkachenko SN. (1998). Physical Chemistry of Ozone. Moscow State University Publisher, 480 p. [in Russian]. Search in Google Scholar

Ma J, Sui MH, Chen ZL, Li NW. (2004). Degradation of Refractory Organic Pollutants by Catalytic Ozonation—Activated Carbon and Mn-Loaded Activated Carbon as Catalysts. Ozone Sci Eng 26(1): 3–10. Search in Google Scholar

Ma J, Wang C, Hong H. (2017). Transition metal doped cryptomelane–type manganese oxide catalysts for ozone decomposition. Appl Catal B Environ 201: 503–510. Search in Google Scholar

Mohamed EF, Awad G, Zaitan H, Andriantsiferana C, Manero M–H. (2018). Transition metals-incorporated zeolites as environmental catalysts for indoor air ozone decomposition. Environ Technol 39(7): 878–886. Search in Google Scholar

Mok YS, Yoon EY. (2006). Effect of Ozone Injection on the Catalytic Reduction of Nitrogen Oxides. Ozone Sci Eng 28: 105–110. Search in Google Scholar

Mortier J. (1982). Compilation of extra framework sites in zeolites, Guildford: Butterworth Sci. Ltd., 67 p. Search in Google Scholar

Nishikawa M, Hiura S, Mitani Y, Nosaka Y. (2013). Enhanced photocatalytic activity of BiVO4 by co-grafting of metal ions and combining with CuBi2O4. J Photochem Photobiol A Chem 262: 52–56. Search in Google Scholar

Oohachi K, Fukutake T, Sunao T. (1993). Method for synthesis of iron oxides. Jap Pat CA, 119, 119194g. Search in Google Scholar

Oputu O, Chowdhury M, Nyamayaro K, Fatoki O, Fester V. (2015). Catalytic activities of ultra-small beta-FeOOH nanorods in ozonation of 4-chlorophenol. J Environ Sci 35: 83–90. Search in Google Scholar

Oyama ST. (2000). Chemical and Catalytic Properties of Ozone. Catal Rev Sci Eng 42: 279. Search in Google Scholar

Pahalagedara LR, Dharmarathna S, King’ondu CK, Pahalagedara MN, Meng YT, Kuo CH, Suib SL. (2014). Microwave-Assisted Hydrothermal Synthesis of α-MnO2: Lattice Expansion via Rapid Temperature Ramping and Framework Substitution. J Phys Chem C 118: 20363–20373. Search in Google Scholar

Patzsch J, Bloh J. (2018). Improved photocatalytic ozone abatement over transition metal-grafted titanium dioxide. Catal Today 300: 2–11. Search in Google Scholar

Perry RH, Green D. (1989). Perry‘s Chemical Engineer‘s Handbook, McGraw-Hill, New York, 147 p. Search in Google Scholar

Pradyasti A, Azhariyah AS, Karamah EF, Bismo S. (2018). Preparation of zinc oxide catalyst with activated carbon support for ozone decomposition. IOP Conf Ser Earth Environ Sci 105: 012013. Search in Google Scholar

Qi F, Chu W, Xu B. (2016). Comparison of phenacetin degradation in aqueous solutions by catalytic ozonation with CuFe2O4 and its precursor: Surface properties, intermediates and reaction mechanisms. Chem Eng J 284: 28–36. Search in Google Scholar

Radhakrishnan R, Oyama ST, Chen J, Asakura A. (2001). Electron Transfer Effects in Ozone Decomposition on Supported Manganese Oxide. J Phys Chem B 105(19): 4245–4253. Search in Google Scholar

Rakitskaya T, Truba A, Radchenko E, Golub A. (2018). Mono- and Bimetallic Complexes of Mn(II), Co(II), Cu(II), AND Zn(II) with Schiff Bases Immobilized on Nanosilica as Catalysts in Ozone Decomposition Reaction, Chem Chem Technol 12(1): 1–6. Search in Google Scholar

Rakyts’ka T., Pidmazko A., Golub O. (2004). Compositions Based on Pl(II) and Cu(II) Compounds, Halide Ions, and Bentonite for Ozone Decomposition. Ukr Khim Zh 70: 16 [in Ukrainians]. Search in Google Scholar

Rakovsky SK, Zaikov GE. (2007). Kinetic and mechanism of ozone reactions with organic and polymeric compounds in liquid phase – 2nd edition, Nova Sci. Publ., Inc. New York. Search in Google Scholar

Reed C, Xi Y, Oyama ST. (2005). Distinguishing between reaction intermediates and spectators: a kinetic study of acetone oxidation using ozone on a silica-supported manganese oxide catalyst. J Catal 235: 378–392. Search in Google Scholar

Ren Y, Lai B. (2016). Comparative study on the characteristics, operational life and reactivity of Fe/Cu bimetallic particles prepared by electroless and displacement plating process. RSC Adv 6: 58302–58314. Search in Google Scholar

Ren Y, Li J, Peng J, Ji F, Lai B. (2018). Strengthening the catalytic activity for ozonation of Cu/Al2O3 by an electroless plating−calcination process. Ind Eng Chem Res 57: 1815–1825. Search in Google Scholar

Qi F, Xu B, Chen Z, Zhang L, Zhang P, Sun D. (2010). Mechanism investigation of catalyzed ozonation of 2-methylisoborneol in drinking water over aluminum (hydroxyl) oxides: Role of surface hydroxyl group. Chem Eng J 165: 490–499. Search in Google Scholar

Skalska K, Miller JS, Wilk M, Ledakowicz S. (2012). Nitrogen Oxides Ozonation as a Method for NOx Emission Abatement. Ozone Sci Eng 34: 252–258. Search in Google Scholar

Skoumal M, Cabot PL, Centellas F, Arias C, Rodriguez RM, Garrido JA, Brillas E. (2006). Appl Catal B Environ 66: 228–240. Search in Google Scholar

Staehelin J, Hoigne J. (1982). Decomposition of ozone in water–rate of initiation by hydroxide ions and hydrogen–peroxide. Environ Sci Technol 16: 676–681. Search in Google Scholar

Su D, Ahn H–J, Wang G. (2013). Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries. J Mater Chem A 1: 4845–4850. Search in Google Scholar

Sun M, Yu L, Ye F, Diao GQ, Yu Q, Hao ZF, Zheng YY, Yuan LX. (2013). Transition metal doped cryptomelane-type manganese oxide for low-temperature catalytic combustion of dimethyl ether. Chem. Eng. J. 220: 320–327. Search in Google Scholar

Tchihara S. (1988). Cobalt catalyst for decomposition of ozone. Jap Pat CA, 108, 192035h. Search in Google Scholar

Terui S, Sadao K, Sano N, Nichikawa T. (1990). Synthesis of supported silver oxide catalysts. Jap Pat CA, 112, 20404p. Search in Google Scholar

Terui S, Sadao K, Sano N, Nichikawa T. (1991). Investigation on Pd and Rh catalysts supported on colloidal polyurethane for ozone destruction. Jap Pat CA, 114, 108179b. Search in Google Scholar

Tidahy HL, Siffert S, Wyrwalski F, Lamonier J–F, Aboukaïs A. (2007). Catalytic activity of copper and palladium based catalysts for toluene total oxidation. Catal Today 119: 317–320. Search in Google Scholar

Wang C, Ma J, Liu F, He H, Zhang R. (2015). The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS–2) Catalysts. J Phys Chem C 119: 23119–23126. Search in Google Scholar

Wang M, Zhang P, Li J, Jiang C. (2014). The effects of Mn loading on the structure and ozone decomposition activity of MnOx supported on activated carbon. Chinese J Catal 35: 335–341. Search in Google Scholar

Wiley-VCH. (1991). Ullmann’s Encyclopedia of Industrial Chemistry. John Wiley and Sons, New York. Search in Google Scholar

Wu Z, Zhang G, Zhang R, Yang F. (2018). Insights into Mechanism of Catalytic Ozonation over Practicable Mesoporous Mn-CeOx/γ-Al2O3 Catalysts. Ind Eng Chem Res 57: 1943–1953. Search in Google Scholar

Xi Y, Reed C, Lee Y–K, Oyama ST. (2005). Acetone oxidation using ozone on manganese oxide catalysts. J Phys Chem B 109: 17587–17596. Search in Google Scholar

Zavadskii AV, Kireev SG, Muhin VM, Tkachenko SN, Chebkin VV, Klushin VN, Teplyakov DE. (2002). Thermal Treatment Influence over Hopcalite Activity in Ozone Decomposition. J Phys Chem 76: 2278 [in Russian]. Search in Google Scholar

Zhang Y, Chen M, Zhang Z, Jiang Z, Shangguan W, Einaga H. (2019). Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catal Today 327: 323–333. Search in Google Scholar

Zhao L, Ma J, Sun ZZ. (2008). Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution. Appl Catal B Environ 79: 244–253. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Pharmakologie, Toxikologie