Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology, Botswana International University of Science and TechnologyPalapye, Botswana
Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology, Botswana International University of Science and TechnologyPalapye, Botswana
Department of Mechanical, Energy and Industrial Engineering, Faculty of Engineering and Technology, Botswana International University of Science and TechnologyPalapye, Botswana
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Candido V, da Silva A, Simonassi NT, da Luz F, Monteiro S N. Toughness of Polyester Matrix Composites Reinforced with Sugarcane Bagasse Fibers Evaluated by Charpy Impact Tests. J. Mater. Res. Technol 2017; 6, 4: 334–338. DOI: 10.1016/j.jmrt.2017.06.001.CandidoVda SilvaASimonassiNTda LuzFMonteiroS NToughness of Polyester Matrix Composites Reinforced with Sugarcane Bagasse Fibers Evaluated by Charpy Impact TestsJ. Mater. Res. Technol20176433433810.1016/j.jmrt.2017.06.001Open DOISearch in Google Scholar
Pokhriyal M, Prasad L, Rakesh PK, Raturi HP. Influence of Fiber Loading on Physical and Mechanical Properties of Himalayan Nettle Fabric Reinforced Polyester Composite. Mater. Today Proc. 2018; 5, 9: 16973–16982. DOI: 10.1016/j.matpr.2018.04.101.PokhriyalMPrasadLRakeshPKRaturiHPInfluence of Fiber Loading on Physical and Mechanical Properties of Himalayan Nettle Fabric Reinforced Polyester CompositeMater. Today Proc.201859169731698210.1016/j.matpr.2018.04.101Open DOISearch in Google Scholar
Khakpour H, Ayatollahi MR, Akhavan-Safar A, da Silva LFM. Mechanical Properties of Structural Adhesives Enhanced with Natural Date Palm Tree Fibers: Effects of Length, Density and Fiber Type. Compos. Struct. 2020; 237, January: 111950. DOI: 10.1016/j.compstruct.2020.111950.KhakpourHAyatollahiMRAkhavan-SafarAda SilvaLFMMechanical Properties of Structural Adhesives Enhanced with Natural Date Palm Tree Fibers: Effects of Length, Density and Fiber TypeCompos. Struct2020237January11195010.1016/j.compstruct.2020.111950Open DOISearch in Google Scholar
Rajaee P, Ashenai Ghasemi F, Fasihi M, Saberian M. Effect of Styrene-Butadiene Rubber and Fumed Silica Nano-Filler on the Microstructure and Mechanical Properties of Glass Fiber Reinforced Unsaturated Polyester Resin. Compos. Part B Eng., 2019; 173, November 2018: 106803. DOI: 10.1016/j.compositesb.2019.05.014.RajaeePAshenai GhasemiFFasihiMSaberianMEffect of Styrene-Butadiene Rubber and Fumed Silica Nano-Filler on the Microstructure and Mechanical Properties of Glass Fiber Reinforced Unsaturated Polyester ResinCompos. Part B Eng.2019173November 2018: 106803.10.1016/j.compositesb.2019.05.014Open DOISearch in Google Scholar
Karthi N, Kumaresan K, Sathish S, Gokulkumar S, Prabhu L, Vigneshkumar N. An Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application Areas. Mater. Today Proc. 2020; 27: 2828–2834. DOI: 10.1016/j.matpr.2020.01.011.KarthiNKumaresanKSathishSGokulkumarSPrabhuLVigneshkumarNAn Overview: Natural Fiber Reinforced Hybrid Composites, Chemical Treatments and Application AreasMater. Today Proc.2020272828283410.1016/j.matpr.2020.01.011Open DOISearch in Google Scholar
Madhu P, Sanjay MR, Jawaid M, Siengchin S, Khan A, Pruncu CI. A New Study on Effect of Various Chemical Treatments on Agave Americana Fiber for Composite Reinforcement: Physico-Chemical, Thermal, Mechanical and Morphological Properties. Polym. Test. 2020; 85, February: 106437. DOI: 10.1016/j.polymertesting.2020.106437.MadhuPSanjayMRJawaidMSiengchinSKhanAPruncuCIA New Study on Effect of Various Chemical Treatments on Agave Americana Fiber for Composite Reinforcement: Physico-Chemical, Thermal, Mechanical and Morphological PropertiesPolym. Test.202085February106437.10.1016/j.polymertesting.2020.106437Open DOISearch in Google Scholar
Sangthong S, Pongprayoon T, Yanumet N. Mechanical Property Improvement of Unsaturated Polyester Composite Reinforced with Admicellar-Treated Sisal Fibers. Compos. Part A Appl. Sci. Manuf. 2009; 40, 6–7: 687–694. DOI: 10.1016/j.compositesa.2008.12.004.SangthongSPongprayoonTYanumetNMechanical Property Improvement of Unsaturated Polyester Composite Reinforced with Admicellar-Treated Sisal FibersCompos. Part A Appl. Sci. Manuf.2009406–768769410.1016/j.compositesa.2008.12.004Open DOISearch in Google Scholar
El-Sabbagh A. Effect of Coupling Agent on Natural Fiber in Natural Fiber/Polypropylene Composites on Mechanical and Thermal Behavior. Compos. Part B Eng. 2014; 57: 126–135. DOI: 10.1016/j.compositesb.2013.09.047.El-SabbaghAEffect of Coupling Agent on Natural Fiber in Natural Fiber/Polypropylene Composites on Mechanical and Thermal BehaviorCompos. Part B Eng.20145712613510.1016/j.compositesb.2013.09.047Open DOISearch in Google Scholar
Oushabi A, Sair S, Oudrhiri Hassani F, Abboud Y, Tanane O, El Bouari A. The Effect of Alkali Treatment on Mechanical, Morphological and Thermal Properties of Date Palm Fibers (Dpfs): Study of the Interface of DPF–Polyurethane Composite. South African J. Chem. Eng. 2017; 23: 116–123. DOI: 10.1016/j.sajce.2017.04.005.OushabiASairSOudrhiri HassaniFAbboudYTananeOEl BouariAThe Effect of Alkali Treatment on Mechanical, Morphological and Thermal Properties of Date Palm Fibers (Dpfs): Study of the Interface of DPF–Polyurethane CompositeSouth African J. Chem. Eng.20172311612310.1016/j.sajce.2017.04.005Open DOISearch in Google Scholar
Pereira da Silva JS, Farias da Silva JM, Soares BG, Livi S. Fully Biodegradable Composites Based on Poly(Butylene Adipate-Co-Terephthalate)/Peach Palm Trees Fiber. Compos. Part B Eng. 2017; 129: 117–123. DOI: 10.1016/j.compositesb.2017.07.088.Pereira da SilvaJSFarias da SilvaJMSoaresBGLiviSFully Biodegradable Composites Based on Poly(Butylene Adipate-Co-Terephthalate)/Peach Palm Trees FiberCompos. Part B Eng.201712911712310.1016/j.compositesb.2017.07.088Open DOISearch in Google Scholar
Lassoued M, Mnasri T, Hidouri A, Ben Younes R. Thermomechanical Behavior of Tunisian Palm Fibers Before and After Alkalization. Constr. Build. Mater. 2018; 170: 121–128. DOI: 10.1016/j.conbuildmat.2018.03.070.LassouedMMnasriTHidouriABen YounesRThermomechanical Behavior of Tunisian Palm Fibers Before and After AlkalizationConstr. Build. Mater.201817012112810.1016/j.conbuildmat.2018.03.070Open DOISearch in Google Scholar
Lausund KB, Johnsen BB, Rahbek DB, Hansen FK. Surface Treatment of Alumina Ceramic for Improved Adhesion to a Glass Fiber-Reinforced Polyester Composite. Int. J. Adhes. Adhes. 2015; 63: 34–45. DOI: 10.1016/j.ijadhadh.2015.07.015.LausundKBJohnsenBBRahbekDBHansenFKSurface Treatment of Alumina Ceramic for Improved Adhesion to a Glass Fiber-Reinforced Polyester CompositeInt. J. Adhes. Adhes.201563344510.1016/j.ijadhadh.2015.07.015Open DOISearch in Google Scholar
Dorez G, Ferry L, Sonnier R, Taguet A, Lopez-Cuesta JM. Effect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural Fibers. J. Anal. Appl. Pyrolysis 2014; 107: 323–331. DOI: 10.1016/j.jaap.2014.03.017.DorezGFerryLSonnierRTaguetALopez-CuestaJMEffect of Cellulose, Hemicellulose and Lignin Contents on Pyrolysis and Combustion of Natural FibersJ. Anal. Appl. Pyrolysis201410732333110.1016/j.jaap.2014.03.017Open DOISearch in Google Scholar
Ouarhim W, Zari N, Bouhfid R, Qaiss A. Mechanical Performance of Natural Fibers-Based Thermosetting Composites. Mech. Phys. Test. Biocomposites, Fiber-Reinforced Compos. Hybrid Compos. 2018; 43–60, , DOI: 10.1016/B978-0-08-102292-4.00003-5.OuarhimWZariNBouhfidRQaissAMechanical Performance of Natural Fibers-Based Thermosetting CompositesMech. Phys. Test. Biocomposites, Fiber-Reinforced Compos. Hybrid Compos.2018436010.1016/B978-0-08-102292-4.00003-5Open DOISearch in Google Scholar
Ilangovan M, Guna., Prajwal B, Jiang Q, Reddy N. Extraction and Characterisation of Natural Cellulose Fibers from Kigelia Africana. Carbohydr. Polym. 2020; 236, November 2019: 115996. DOI: 10.1016/j.carbpol.2020.115996.IlangovanMGunaPrajwalBJiangQReddyNExtraction and Characterisation of Natural Cellulose Fibers from Kigelia AfricanaCarbohydr. Polym.2020236November 2019: 115996.10.1016/j.carbpol.2020.11599632172831Open DOISearch in Google Scholar
Godara M. Effect of Chemical Modification of Fiber Surface on Natural Fiber Composites: A Review. Mater. Today Proc. 2019; 18: 3428–3434. DOI: 10.1016/j.matpr.2019.07.270.GodaraMEffect of Chemical Modification of Fiber Surface on Natural Fiber Composites: A ReviewMater. Today Proc.2019183428343410.1016/j.matpr.2019.07.270Open DOISearch in Google Scholar
Kumar GA, Rameshbabu AM, Kumar TR, Parameswaran P. Materials Today : Proceedings Mechanical Advancements of Natural Fiber Composites Due to Change in Length. Mater. Today Proc. 2020; no. xxxx: 9–11. DOI: 10.1016/j.matpr.2020.09.428.KumarGARameshbabuAMKumarTRParameswaranPMaterials Today : Proceedings Mechanical Advancements of Natural Fiber Composites Due to Change in LengthMater. Today Proc.2020no. xxxx:91110.1016/j.matpr.2020.09.428Open DOISearch in Google Scholar
Vigneshwaran S. et al. Recent Advancement in the Natural Fiber Polymer Composites: A Comprehensive Review. J. Clean. Prod. 2020; 277: 124109. DOI: 10.1016/j.jclepro.2020.124109.VigneshwaranSRecent Advancement in the Natural Fiber Polymer Composites: A Comprehensive ReviewJ. Clean. Prod.2020277124109.10.1016/j.jclepro.2020.124109Open DOISearch in Google Scholar
Chaudhary V, Ahmad F. A Review on Plant Fiber Reinforced Thermoset Polymers for Structural and Frictional Composites. Polym. Test. 2020; 91, May: 106792. DOI: 10.1016/j.polymertesting..106792.ChaudharyVAhmadFA Review on Plant Fiber Reinforced Thermoset Polymers for Structural and Frictional CompositesPolym. Test.202091May106792.10.1016/j.polymertesting..106792Open DOISearch in Google Scholar
Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007; 15, 1: 25–33. DOI: 10.1007/s10924-006-0042-3.LiXTabilLGPanigrahiSChemical treatments of natural fiber for use in natural fiber-reinforced composites: A reviewJ. Polym. Environ.2007151253310.1007/s10924-006-0042-3Open DOISearch in Google Scholar
Mahesha GT, Shenoy SB, Kini VM, Padmaraja NH. Effect of Fiber Treatments on Mechanical Properties of Grewia Serrulata Bast Fiber Reinforced Polyester Composites. Mater. Today Proc. 2018; 5, 1: 138–144. DOI: 10.1016/j.matpr.2017.11.064.MaheshaGTShenoySBKiniVMPadmarajaNHEffect of Fiber Treatments on Mechanical Properties of Grewia Serrulata Bast Fiber Reinforced Polyester CompositesMater. Today Proc.20185113814410.1016/j.matpr.2017.11.064Open DOISearch in Google Scholar
Kim JT, Netravali AN. Mercerization of Sisal Fibers: Effect of Tension on Mechanical Properties of Sisal Fiber and Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2010; 41, 9: 1245–1252. DOI: 10.1016/j.compositesa.2010.05.007.KimJTNetravaliANMercerization of Sisal Fibers: Effect of Tension on Mechanical Properties of Sisal Fiber and Fiber-Reinforced CompositesCompos. Part A Appl. Sci. Manuf.20104191245125210.1016/j.compositesa.2010.05.007Open DOISearch in Google Scholar
Ariawan D, Rivai TS, Surojo E, Hidayatulloh S, Akbar HI, Prabowo AR. Effect of Alkali Treatment of Salacca Zalacca Fiber (SZF) on Mechanical Properties of HDPE Composite Reinforced with SZF. Alexandria Eng. J. 2020; 59, 5: 3981–3989. DOI: 10.1016/j.aej.2020.07.005.AriawanDRivaiTSSurojoEHidayatullohSAkbarHIPrabowoAREffect of Alkali Treatment of Salacca Zalacca Fiber (SZF) on Mechanical Properties of HDPE Composite Reinforced with SZFAlexandria Eng. J.20205953981398910.1016/j.aej.2020.07.005Open DOISearch in Google Scholar
Ganapathy T, Sathiskumar R, Senthamaraikannan P, Saravanakumar SS, Khan A. Characterization of Raw and Alkali Treated New Natural Cellulosic Fibers Extracted from the Aerial Roots of Banyan Tree. Int. J. Biol. Macromol. 2019; 138: 573–581. DOI: 10.1016/j.ijbiomac.2019.07.136.GanapathyTSathiskumarRSenthamaraikannanPSaravanakumarSSKhanACharacterization of Raw and Alkali Treated New Natural Cellulosic Fibers Extracted from the Aerial Roots of Banyan TreeInt. J. Biol. Macromol.201913857358110.1016/j.ijbiomac.2019.07.13631348971Open DOISearch in Google Scholar
Petchwattana N. Covavisaruch S. Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly(Lactic Acid) and Rubber Wood Sawdust (Hevea Brasiliensis). J. Bionic Eng. 2014; 11, 4: 630–637. DOI: 10.1016/S1672-6529(14)60074-3.PetchwattanaNCovavisaruch S. Mechanical and Morphological Properties of Wood Plastic Biocomposites Prepared from Toughened Poly(Lactic Acid) and Rubber Wood Sawdust (Hevea Brasiliensis)J. Bionic Eng.201411463063710.1016/S1672-6529(14)60074-3Open DOISearch in Google Scholar
Sharan U, Dhamarikar M, Dharkar A, Chaturvedi S, Tiwari S. Materials Today : Proceedings Surface Modification of Banana Fiber : A Review. Mater. Today Proc. 2020; no. xxxx: 5–10. DOI: 10.1016/j.matpr.2020.07.217.SharanUDhamarikarMDharkarAChaturvediSTiwariSMaterials Today : Proceedings Surface Modification of Banana Fiber : A ReviewMater. Today Proc.2020xxxx51010.1016/j.matpr.2020.07.217Open DOISearch in Google Scholar
Safri SNA., Sultan MTH, Jawaid M, Abdul Majid MS. Analysis of Dynamic Mechanical, Low-Velocity Impact and Compression after Impact Behaviour of Benzoyl Treated Sugar Palm/Glass/Epoxy Composites. Compos. Struct. 2019; 226, January. DOI: 10.1016/j.compstruct.2019.111308.SafriSNA.SultanMTHJawaidMAbdul MajidMSAnalysis of Dynamic Mechanical, Low-Velocity Impact and Compression after Impact Behaviour of Benzoyl Treated Sugar Palm/Glass/Epoxy CompositesCompos. Struct.2019226January10.1016/j.compstruct.2019.111308Open DOISearch in Google Scholar
Mohd Izwan S, Sapuan SM, Zuhri MYM, Mohamed AR. Effects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological Properties. J. Mater. Res. Technol. 2020; 9, 3: 5805–5814. DOI: 10.1016/j.jmrt.2020.03.105.Mohd IzwanSSapuanSMZuhriMYMMohamedAREffects of Benzoyl Treatment on NaOH Treated Sugar Palm Fiber: Tensile, Thermal, and Morphological PropertiesJ. Mater. Res. Technol.2020935805581410.1016/j.jmrt.2020.03.105Open DOISearch in Google Scholar
Kumneadklang S, Thong S O-, Larpkiattaworn S. Characterization of Cellulose Fiber Isolated from Oil Palm Frond Biomass. Mater. Today Proc. 2019; 17: 1995–2001. DOI: 10.1016/j.matpr.2019.06.247.KumneadklangSThongS O-LarpkiattawornSCharacterization of Cellulose Fiber Isolated from Oil Palm Frond BiomassMater. Today Proc.2019171995200110.1016/j.matpr.2019.06.247Open DOISearch in Google Scholar
Johar N, Ahmad I, Dufresne A. Extraction, Preparation and Characterization of Cellulose Fibers and Nanocrystals from Rice Husk. Ind. Crops Prod. 2012; 37, 1: 93–99. DOI: 10.1016/j.indcrop.2011.12.016.JoharNAhmadIDufresneAExtraction, Preparation and Characterization of Cellulose Fibers and Nanocrystals from Rice HuskInd. Crops Prod.2012371939910.1016/j.indcrop.2011.12.016Open DOISearch in Google Scholar
Ferreira DP, Cruz J, Fangueiro R. Surface Modification of Natural Fibers in Polymer Composites. Elsevier Ltd, 2018.FerreiraDPCruzJFangueiroRSurface Modification of Natural Fibers in Polymer CompositesElsevier Ltd201810.1016/B978-0-08-102177-4.00001-XSearch in Google Scholar
Senthilraja R, Sarala R., Godwin Antony A, Seshadhri. Effect of acetylation technique on mechanical behavior and durability of palm fiber vinyl-ester composites. Mater. Today Proc. 2020; 21: 634–637. DOI: 10.1016/j.matpr.2019.06.729.SenthilrajaRSaralaR.Godwin AntonyASeshadhriEffect of acetylation technique on mechanical behavior and durability of palm fiber vinyl-ester compositesMater. Today Proc.20202163463710.1016/j.matpr.2019.06.729Open DOISearch in Google Scholar
Fitch-Vargas PR et al, Mechanical, Physical and Microstructural Properties of Acetylated Starch-Based Biocomposites Reinforced with Acetylated Sugarcane Fiber Carbohydr. Polym. 2019; 219, May: 378–386. DOI: 10.1016/j.carbpol.2019.05.043.Fitch-VargasPRMechanical, Physical and Microstructural Properties of Acetylated Starch-Based Biocomposites Reinforced with Acetylated Sugarcane Fiber CarbohydrPolym2019219May37838610.1016/j.carbpol.2019.05.04331151537Open DOISearch in Google Scholar
Daud S, Ismail H, Bakar AA. The Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder Composites. Procedia Chem. 2016; 19: 327–334. DOI: 10.1016/j.proche.2016.03.019.DaudSIsmailHBakarAAThe Effect of 3-aminopropyltrimethyoxysilane (AMEO) as a Coupling Agent on Curing and Mechanical Properties of Natural Rubber/Palm Kernel Shell Powder CompositesProcedia Chem.20161932733410.1016/j.proche.2016.03.019Open DOISearch in Google Scholar
Radotić K, Simić-Krstić J, Jeremić M, Trifunović M. A Study of Lignin Formation at the Molecular Level by Scanning Tunneling Microscopy. Biophys. J. 1994; 66, 6: 1763–1767. DOI: 10.1016/S0006-3495(94)81007-0.RadotićKSimić-KrstićJJeremićMTrifunovićMA Study of Lignin Formation at the Molecular Level by Scanning Tunneling MicroscopyBiophys. J.19946661763176710.1016/S0006-3495(94)81007-012759028075317Open DOISearch in Google Scholar
Asim M, Jawaid M, Abdan K, Ishak MR. Effect of Alkali and Silane Treatments on Mechanical and Fiber-Matrix Bond Strength of Kenaf and Pineapple Leaf Fibers. J. Bionic Eng. 2016; 13, 3: 426–435. DOI: 10.1016/S1672-6529(16)60315-3.AsimMJawaidMAbdanKIshakMREffect of Alkali and Silane Treatments on Mechanical and Fiber-Matrix Bond Strength of Kenaf and Pineapple Leaf FibersJ. Bionic Eng.201613342643510.1016/S1672-6529(16)60315-3Open DOISearch in Google Scholar
Orue A, Jauregi A, Unsuain U, Labidi J, Eceiza A, Arbelaiz A. The Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(Lactic Acid)/Sisal Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2016; 84: 186–195. DOI: 10.1016/j.compositesa.2016.01.021.OrueAJauregiAUnsuainULabidiJEceizaAArbelaizAThe Effect of Alkaline and Silane Treatments on Mechanical Properties and Breakage of Sisal Fibers and Poly(Lactic Acid)/Sisal Fiber CompositesCompos. Part A Appl. Sci. Manuf.20168418619510.1016/j.compositesa.2016.01.021Open DOISearch in Google Scholar
Liu Y, Xie J, Wu N, Wang L, Ma Y, Tong J. Influence of Silane Treatment on the Mechanical, Tribological and Morphological Properties of Corn Stalk Fiber Reinforced Polymer Composites. Tribol. Int. 2019; 131, September 2018: 398–405. DOI: 10.1016/j.triboint.2018.11.004.LiuYXieJWuNWangLMaYTongJInfluence of Silane Treatment on the Mechanical, Tribological and Morphological Properties of Corn Stalk Fiber Reinforced Polymer CompositesTribol. Int.2019131September201839840510.1016/j.triboint.2018.11.004Open DOISearch in Google Scholar
Gupta US. et al. Plasma Modification of Natural Fiber: A Review. Mater. Today Proc. 2020; 43: 451–457. DOI: 10.1016/j.matpr.2020.11.973.GuptaUSPlasma Modification of Natural Fiber: A ReviewMater. Today Proc.20204345145710.1016/j.matpr.2020.11.973Open DOISearch in Google Scholar
Sun D. Surface Modification of Natural Fibers Using Plasma Treatment. Biodegrad. Green Compos. 2016; December: 18–39. DOI: 10.1002/9781118911068.ch2.SunDSurface Modification of Natural Fibers Using Plasma TreatmentBiodegrad. Green Compos.2016December183910.1002/9781118911068.ch2Open DOISearch in Google Scholar
Valášek P, Müller M, Šleger V. Influence of Plasma Treatment on Mechanical Properties of Cellulose-Based Fibers and their Interfacial Interaction in Composite Systems. BioResources 2017; 12, 3: 5449–5461. DOI: 10.15376/biores.12.3.5449-5461.ValášekPMüllerMŠlegerVInfluence of Plasma Treatment on Mechanical Properties of Cellulose-Based Fibers and their Interfacial Interaction in Composite SystemsBioResources20171235449546110.15376/biores.12.3.5449-5461Open DOISearch in Google Scholar
Rajwin AJ, Prakash C. Effect of Air Plasma Treatment on Thermal Comfort Properties of Woven Fabric. Int. J. Thermophys. 2017; 38, 11. DOI: 10.1007/s10765-017-2299-2.RajwinAJPrakashCEffect of Air Plasma Treatment on Thermal Comfort Properties of Woven FabricInt. J. Thermophys.2017381110.1007/s10765-017-2299-2Open DOISearch in Google Scholar
Zhou Z, et al. Hydrophobic Surface Modification of Ramie Fibers with Ethanol Pretreatment and Atmospheric Pressure Plasma Treatment Surf. Coatings Technol. 2011;. 205, 17–18: 4205–4210. DOI: 10.1016/j.surfcoat.2011.03.022.ZhouZHydrophobic Surface Modification of Ramie Fibers with Ethanol Pretreatment and Atmospheric Pressure Plasma Treatment SurfCoatings Technol.201120517–184205421010.1016/j.surfcoat.2011.03.022Open DOISearch in Google Scholar
Macedo MJP, Mattos ALA, Costa THC, Feitor MC, Ito EN, Melo JDD. Effect of Cold Plasma Treatment on Recycled Polyethylene/Kapok Composites Interface Adhesion. Compos. Interfaces 2019; 26, 10: 871–886. DOI: 10.1080/09276440.2018.1549892.MacedoMJPMattosALACostaTHCFeitorMCItoENMeloJDDEffect of Cold Plasma Treatment on Recycled Polyethylene/Kapok Composites Interface AdhesionCompos. Interfaces2019261087188610.1080/09276440.2018.1549892Open DOISearch in Google Scholar
Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GIN. Effect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-Reinforced Composites. Compos. Part A Appl. Sci. Manuf., 2016; 90: 589–597. DOI: 10.1016/j.compositesa.2016.08.025.CaiMTakagiHNakagaitoANLiYWaterhouseGINEffect of Alkali Treatment on Interfacial Bonding in Abaca Fiber-Reinforced CompositesCompos. Part A Appl. Sci. Manuf.20169058959710.1016/j.compositesa.2016.08.025Open DOISearch in Google Scholar
Yan L, Chouw N, Huang L, Kasal B. Effect of Alkali Treatment on Microstructure and Mechanical Properties of Coir Fibers, Coir Fiber Reinforced-Polymer Composites and Reinforced-Cementitious Composites. Constr. Build. Mater. 2016; 112: 168–182. DOI: 10.1016/j.conbuildmat.2016.02.182.YanLChouwNHuangLKasalBEffect of Alkali Treatment on Microstructure and Mechanical Properties of Coir Fibers, Coir Fiber Reinforced-Polymer Composites and Reinforced-Cementitious CompositesConstr. Build. Mater.201611216818210.1016/j.conbuildmat.2016.02.182Open DOISearch in Google Scholar
Bessa W, Trache D, Derradji M, Tarchoun AF. Morphological, Thermal and Mechanical Properties of Benzoxazine Resin Reinforced with Alkali Treated Alfa Fibers. Ind. Crops Prod. 2021; 165, March: 113423. DOI: 10.1016/j.indcrop.2021.113423.BessaWTracheDDerradjiMTarchounAFMorphological, Thermal and Mechanical Properties of Benzoxazine Resin Reinforced with Alkali Treated Alfa FibersInd. Crops Prod.2021165March113423.10.1016/j.indcrop.2021.113423Open DOISearch in Google Scholar
Azlina Ramlee N, Jawaid M, Abdul Karim Yamani S, Syams Zainudin E, Alamery S. Effect of Surface Treatment on Mechanical, Physical And Morphological Properties of Oil Palm/Bagasse Fiber Reinforced Phenolic Hybrid Composites for Wall Thermal Insulation Application. Constr. Build. Mater. 2021; 276: 122239. DOI: 10.1016/j.conbuildmat.2020.122239.Azlina RamleeNJawaidMAbdul Karim YamaniSSyams ZainudinEAlamerySEffect of Surface Treatment on Mechanical, Physical And Morphological Properties of Oil Palm/Bagasse Fiber Reinforced Phenolic Hybrid Composites for Wall Thermal Insulation ApplicationConstr. Build. Mater.2021276122239.10.1016/j.conbuildmat.2020.122239Open DOISearch in Google Scholar
Dawit JB, Lemu HG, Regassa Y, Akessa AD. Materials Today : Proceedings Investigation of the Mechanical Properties of Acacia Tortilis Fiber Reinforced Natural Composite. Mater. Today Proc. 2021; 38: 2953–2958. DOI: 10.1016/j.matpr.2020.09.308.DawitJBLemuHGRegassaYAkessaADMaterials Today : Proceedings Investigation of the Mechanical Properties of Acacia Tortilis Fiber Reinforced Natural CompositeMater. Today Proc.2021382953295810.1016/j.matpr.2020.09.308Open DOISearch in Google Scholar
Prabhu L. et al. Materials Today : Proceedings Experimental Investigation on Mechanical Properties of Flax / Banana / Industrial Waste Tea Leaf Fiber Reinforced Hybrid Polymer Composites. Mater. Today Proc. 2021; 45: 8136–8143. DOI: 10.1016/j.matpr.2021.02.111.PrabhuLMaterials Today : Proceedings Experimental Investigation on Mechanical Properties of Flax / Banana / Industrial Waste Tea Leaf Fiber Reinforced Hybrid Polymer CompositesMater. Today Proc.2021458136814310.1016/j.matpr.2021.02.111Open DOISearch in Google Scholar
Vinod A. et al. Novel Muntingia Calabura Bark Fiber Reinforced Green-Epoxy Composite : A Sustainable and Green Material For Cleaner Production. J. Clean. Prod. 2021; 294: 126337. DOI: 10.1016/j.jclepro.2021.126337.VinodANovel Muntingia Calabura Bark Fiber Reinforced Green-Epoxy Composite : A Sustainable and Green Material For Cleaner ProductionJ. Clean. Prod.2021294126337.10.1016/j.jclepro.2021.126337Open DOISearch in Google Scholar
Hill CAS, Khalil HPSA, Hale MD. A Study of the Potential of Acetylation to Improve the Properties of Plant Fibers. Industrial Crops and Products 1998; 8(1): 53–63. DOI:10.1016/S0926-6690(97)10012-7.HillCASKhalilHPSAHaleMDA Study of the Potential of Acetylation to Improve the Properties of Plant FibersIndustrial Crops and Products199881536310.1016/S0926-6690(97)10012-7Open DOISearch in Google Scholar