Acceso abierto

Note on the compatibility of ICOS, NEON, and TERN sampling designs, different camera setups for effective plant area index estimation with digital hemispherical photography


Cite

Brown, L.A., Meier, C., Morris, H., Pastor-Guzman, J., Bai, G., Lerebourg, C., Gobron, N., Lanconelli, C., Clerici, M., Dash, J. 2020. Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data. – Remote Sensing of Environment, 247, 111935. https://doi.org/10.1016/j.rse.2020.111935. BrownL.A. MeierC. MorrisH. Pastor-GuzmanJ. BaiG. LerebourgC. GobronN. LanconelliC. ClericiM. DashJ. 2020 Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data Remote Sensing of Environment 247 111935 https://doi.org/10.1016/j.rse.2020.111935. Search in Google Scholar

Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W., Armston, J., Lewis, P. 2018. Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index. – Agricultural and Forest Meteorology, 252, 231–240. CaldersK. OrigoN. DisneyM. NightingaleJ. WoodgateW. ArmstonJ. LewisP. 2018 Variability and bias in active and passive ground-based measurements of effective plant, wood and leaf area index Agricultural and Forest Meteorology 252 231 240 Search in Google Scholar

Cescatti, A. 2007. Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques. – Agricultural and Forest Meteorology, 143, 1–12. https://doi.org/10.1016/j.agrformet.2006.04.009. CescattiA. 2007 Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques Agricultural and Forest Meteorology 143 1 12 https://doi.org/10.1016/j.agrformet.2006.04.009. Search in Google Scholar

Chen, J.M. 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. – Agricultural and Forest Meteorology, 80(2–4), 135–163. https://doi.org/10.1016/0168-1923(95)02291-0. ChenJ.M. 1996 Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands Agricultural and Forest Meteorology 80 2–4 135 163 https://doi.org/10.1016/0168-1923(95)02291-0. Search in Google Scholar

Chen, J.M., Black, T.A. 1992. Defining leaf area index for non-flat leaves. – Plant, Cell & Environment, 15(4), 421–429. https://doi.org/10.1111/j.1365-3040.1992.tb00992.x. ChenJ.M. BlackT.A. 1992 Defining leaf area index for non-flat leaves Plant, Cell & Environment 15 4 421 429 https://doi.org/10.1111/j.1365-3040.1992.tb00992.x. Search in Google Scholar

Coffin, D. 2018. Decoding raw digital photos in Linux. [WWW document]. – URL https://www.dechifro.org/dcraw/. [Accessed 3 January 2023]. CoffinD. 2018 Decoding raw digital photos in Linux [WWW document]. – URL https://www.dechifro.org/dcraw/. [Accessed 3 January 2023]. Search in Google Scholar

Fang, H., Baret, F., Plummer, S., Schaepman-Strub, G. 2019. An overview of global leaf area index (LAI): Methods, products, validation, and applications. – Reviews of Geophysics, 57(3), 739–799. https://doi.org/10.1029/2018RG000608. FangH. BaretF. PlummerS. Schaepman-StrubG. 2019 An overview of global leaf area index (LAI): Methods, products, validation, and applications Reviews of Geophysics 57 3 739 799 https://doi.org/10.1029/2018RG000608. Search in Google Scholar

Fernandes, R., Plummer, S., Nightingale, J., Baret, F., Camacho, F., Fang, H., Garrigues, S., Gobron, N., Lang, M., Lacaze, R., LeBlanc, S., Meroni, M., Martinez, B., Nilson, T., Pinty, B., Pisek, J., Sonnentag, O., Verger, A., Welles, J., Weiss, M., Widlowski, J.L. 2014. Global leaf area index product validation good practices. Version 2.0. – Schaepman-Strub, G., Román, M., Nickeson, J. (eds.). Good Practices for Satellite-Derived Land Product Validation. Geneva, Switzerland, Land Product Validation Subgroup (WGCV/CEOS). 76 pp. https://lpvs.gsfc.nasa.gov/PDF/CEOS_LAI_PROTOCOL_Aug2014_v2.0.1.pdf. FernandesR. PlummerS. NightingaleJ. BaretF. CamachoF. FangH. GarriguesS. GobronN. LangM. LacazeR. LeBlancS. MeroniM. MartinezB. NilsonT. PintyB. PisekJ. SonnentagO. VergerA. WellesJ. WeissM. WidlowskiJ.L. 2014 Global leaf area index product validation good practices. Version 2.0 Schaepman-StrubG. RománM. NickesonJ. (eds.). Good Practices for Satellite-Derived Land Product Validation Geneva, Switzerland Land Product Validation Subgroup (WGCV/CEOS) 76 pp. https://lpvs.gsfc.nasa.gov/PDF/CEOS_LAI_PROTOCOL_Aug2014_v2.0.1.pdf. Search in Google Scholar

GBOV. 2023. Ground-based observations for validation (GBOV) of Copernicus global land products. [WWW document]. – URL https://land.copernicus.eu/global/gbov. [Accessed 8 January 2023]. GBOV 2023 Ground-based observations for validation (GBOV) of Copernicus global land products [WWW document]. – URL https://land.copernicus.eu/global/gbov. [Accessed 8 January 2023]. Search in Google Scholar

GCOS-138. 2010. Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update). WMO/TD-No. 1523. Geneva, Switzerland, GCOS Secretariat, World Meteorological Organization (WMO). 180 pp. GCOS-138 2010 Implementation plan for the global observing system for climate in support of the UNFCCC (2010 Update) WMO/TD-No. 1523 Geneva, Switzerland GCOS Secretariat, World Meteorological Organization (WMO) 180 pp. Search in Google Scholar

Gielen, B., Op de Beeck, M., Michilsens, F., Papale, D. 2017. ICOS ecosystem instructions for ancillary vegetation measurements in forest (version 20200330). ICOS Ecosystem Thematic Centre. [WWW document]. – URL https://doi.org/10.18160/4ajs-z4r9. [Accessed 10 January 2023]. GielenB. Op de BeeckM. MichilsensF. PapaleD. 2017 ICOS ecosystem instructions for ancillary vegetation measurements in forest (version 20200330) ICOS Ecosystem Thematic Centre [WWW document]. – URL https://doi.org/10.18160/4ajs-z4r9. [Accessed 10 January 2023]. Search in Google Scholar

ISO/CIE. 2004. ISO5469:2004(E)/CIE S 011/E:2003. Spatial distribution of daylight – CIE standard general sky. Geneva, Switzerland / Vienna, Austria, ISO and CIE. 7 pp. ISO/CIE 2004 ISO5469:2004(E)/CIE S 011/E:2003. Spatial distribution of daylight CIE standard general sky Geneva, Switzerland / Vienna, Austria ISO and CIE 7 pp. Search in Google Scholar

Karan, M. 2015. Supersites vegetation monitoring protocols. TERN Australian SuperSite Network. Version 1.21. [WWW document]. – URL https://www.tern.org.au/wp-content/uploads/SuperSites_Vegetation_Monitoring_Protocols_Ver1.21.pdf. [Accessed 8 January 2023]. KaranM. 2015 Supersites vegetation monitoring protocols TERN Australian SuperSite Network. Version 1.21. [WWW document]. – URL https://www.tern.org.au/wp-content/uploads/SuperSites_Vegetation_Monitoring_Protocols_Ver1.21.pdf. [Accessed 8 January 2023]. Search in Google Scholar

Kuusk, A., Kuusk, J., Lang, M. 2009. A dataset for the validation of reflectance models. – Remote Sensing of Environment, 113(5), 889–892. https://doi.org/10.1016/j.rse.2009.01.005. KuuskA. KuuskJ. LangM. 2009 A dataset for the validation of reflectance models Remote Sensing of Environment 113 5 889 892 https://doi.org/10.1016/j.rse.2009.01.005. Search in Google Scholar

Kuusk, A., Lang, M., Kuusk, J. 2013. Database of optical and structural data for the validation of forest radiative transfer models. – Light Scattering Reviews, 7, 109–148. KuuskA. LangM. KuuskJ. 2013 Database of optical and structural data for the validation of forest radiative transfer models Light Scattering Reviews 7 109 148 Search in Google Scholar

Lang, M., Kodar, A., Arumäe, T. 2013. Restoration of above canopy reference hemispherical image from below canopy measurements for plant area index estimation in forests. – Forestry Studies / Metsanduslikud Uurimused, 59, 13–27. LangM. KodarA. ArumäeT. 2013 Restoration of above canopy reference hemispherical image from below canopy measurements for plant area index estimation in forests Forestry Studies / Metsanduslikud Uurimused 59 13 27 Search in Google Scholar

Lang, M., Kuusk, A., Kaha, M., Pisek, J., George, J.-P., Kiviste, A., Laarmann, D., Türk, K., Arumäe, T. 2021. Changes during twelve years in three mature hemiboreal stands growing in a radiation model intercomparison test site, Järvselja, Estonia. – Forestry Studies / Metsanduslikud Uurimused, 74, 112–122. LangM. KuuskA. KahaM. PisekJ. GeorgeJ.-P. KivisteA. LaarmannD. TürkK. ArumäeT. 2021 Changes during twelve years in three mature hemiboreal stands growing in a radiation model intercomparison test site, Järvselja, Estonia Forestry Studies / Metsanduslikud Uurimused 74 112 122 Search in Google Scholar

Lang, M., Kuusk, A., Mõttus, M., Rautiainen, M., Nilson, T. 2010. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. – Agricultural and Forest Meteorology, 150(1), 20–29. https://doi.org/10.1016/j.agrformet.2009.08.001. LangM. KuuskA. MõttusM. RautiainenM. NilsonT. 2010 Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method Agricultural and Forest Meteorology 150 1 20 29 https://doi.org/10.1016/j.agrformet.2009.08.001. Search in Google Scholar

Lang, M., Nilson, T., Kuusk, A., Pisek, J., Korhonen, L., Uri, V. 2017. Digital photography for tracking the phenology of an evergreen conifer stand. – Agricultural and Forest Meteorology, 246, 15–21. LangM. NilsonT. KuuskA. PisekJ. KorhonenL. UriV. 2017 Digital photography for tracking the phenology of an evergreen conifer stand Agricultural and Forest Meteorology 246 15 21 Search in Google Scholar

Lang, M., Pisek, J. 2019. Tracking the long-term structure changes of a mature deciduous broadleaf forest stand using digital hemispherical photography. – Forestry Studies / Metsanduslikud Uurimused, 70, 80–87. LangM. PisekJ. 2019 Tracking the long-term structure changes of a mature deciduous broadleaf forest stand using digital hemispherical photography Forestry Studies / Metsanduslikud Uurimused 70 80 87 Search in Google Scholar

Liu, J., Li, L., Akerblom, M., Wang, T., Skidmore, A., Zhu, X., Heurich, M. 2021. Comparative evaluation of algorithms for leaf area index estimation from digital hemispherical photography through virtual forests. – Remote Sensing, 13(16), 3325. https://doi.org/10.3390/rs13163325. LiuJ. LiL. AkerblomM. WangT. SkidmoreA. ZhuX. HeurichM. 2021 Comparative evaluation of algorithms for leaf area index estimation from digital hemispherical photography through virtual forests Remote Sensing 13 16 3325 https://doi.org/10.3390/rs13163325. Search in Google Scholar

Majasalmi, T., Rautiainen, M., Stenberg, P., Rita, H. 2012. Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest. – Agricultural and Forest Meteorology, 154–155, 38–43. https://doi.org/10.1016/j.agrformet.2011.10.002. MajasalmiT. RautiainenM. StenbergP. RitaH. 2012 Optimizing the sampling scheme for LAI-2000 measurements in a boreal forest Agricultural and Forest Meteorology 154–155 38 43 https://doi.org/10.1016/j.agrformet.2011.10.002. Search in Google Scholar

Meier, C., Jones, K. 2018. TOS protocol and procedure: Measurement of leaf area index. [WWW document]. – URL https://data.neonscience.org/documents/10179/1883155/NEON.DOC.014039vM/94cd2218-598c-935f-829e-5003d7b25950. [Accessed 8 January 2023]. MeierC. JonesK. 2018 TOS protocol and procedure: Measurement of leaf area index [WWW document]. – URL https://data.neonscience.org/documents/10179/1883155/NEON.DOC.014039vM/94cd2218-598c-935f-829e-5003d7b25950. [Accessed 8 January 2023]. Search in Google Scholar

Miller, J.B. 1967. A formula for average foliage density. – Australian Journal of Botany, 15(1), 141–144. MillerJ.B. 1967 A formula for average foliage density Australian Journal of Botany 15 1 141 144 Search in Google Scholar

Morisette, J.T., Baret, F., Privette, J.L., Myneni, R.B., Nickeson, J.E., Garrigues, S., Shabanov, N.V., Weiss, M., Fernandes, R.A., Leblanc, S.G., Kalacska, M., Sanchez-Azofeifa, G.A., Chubey, M., Rivard, B., Stenberg, P., Rautiainen, M., Voipio, P., Manninen, T., Pilant, A.N., Lewis, T.E., Iiames, J.S., Colombo, R., Meroni, M., Busetto, L., Cohen, W.B., Turner, D.P., Warner, E.D., Petersen, G.W., Seufert, G., Cook, R. 2006. Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup. – IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1804–1817. https://doi.org/10.1109/TGRS.2006.872529. MorisetteJ.T. BaretF. PrivetteJ.L. MyneniR.B. NickesonJ.E. GarriguesS. ShabanovN.V. WeissM. FernandesR.A. LeblancS.G. KalacskaM. Sanchez-AzofeifaG.A. ChubeyM. RivardB. StenbergP. RautiainenM. VoipioP. ManninenT. PilantA.N. LewisT.E. IiamesJ.S. ColomboR. MeroniM. BusettoL. CohenW.B. TurnerD.P. WarnerE.D. PetersenG.W. SeufertG. CookR. 2006 Validation of global moderate-resolution LAI products: a framework proposed within the CEOS land product validation subgroup IEEE Transactions on Geoscience and Remote Sensing 44 7 1804 1817 https://doi.org/10.1109/TGRS.2006.872529. Search in Google Scholar

Nackaerts, K., Coppin, P., Muys, B., Hermy, M. 2000. Sampling methodology for LAI measurements with LAI-2000 in small forest stands. – Agricultural and Forest Meteorology, 101(4), 247–250. NackaertsK. CoppinP. MuysB. HermyM. 2000 Sampling methodology for LAI measurements with LAI-2000 in small forest stands Agricultural and Forest Meteorology 101 4 247 250 Search in Google Scholar

Widlowski, J.-L., Mio, C., Disney, M., Adams, J., Andredakis, I., Atzberger, C., Brennan, J., Busetto, L., Chelle, M., Ceccherini, G., Colombo, R., Côté, J.-F., Eenmäe, A., Essery, R., Gastellu-Etchegorry, J.-P., Gobron, N., Grau, E., Haverd, V., Homolová, L., Huang, H., Hunt, L., Kobayashi, H., Koetz, B., Kuusk, A., Kuusk, J., Lang, M., Lewis, P.E., Lovell, J.L., Malenovský, Z., Meroni, M., Morsdorf, F., Mõttus, M., Ni-Meister, W., Pinty, B., Rautiainen, M., Schlerf, M., Somers, B., Stuckens, J., Verstraete, M.M., Yang, W., Zhao, F., Zenone, T. 2015. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing. – Remote Sensing of Environment, 169, 418–437. WidlowskiJ.-L. MioC. DisneyM. AdamsJ. AndredakisI. AtzbergerC. BrennanJ. BusettoL. ChelleM. CeccheriniG. ColomboR. CôtéJ.-F. EenmäeA. EsseryR. Gastellu-EtchegorryJ.-P. GobronN. GrauE. HaverdV. HomolováL. HuangH. HuntL. KobayashiH. KoetzB. KuuskA. KuuskJ. LangM. LewisP.E. LovellJ.L. MalenovskýZ. MeroniM. MorsdorfF. MõttusM. Ni-MeisterW. PintyB. RautiainenM. SchlerfM. SomersB. StuckensJ. VerstraeteM.M. YangW. ZhaoF. ZenoneT. 2015 The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing Remote Sensing of Environment 169 418 437 Search in Google Scholar

Zou, J., Hou, W., Chen, L., Wang, Q., Zhong, P., Zuo, Y., Luo, S., Leng, P. 2020. Evaluating the impact of sampling schemes on leaf area index measurements from digital hemispherical photography in Larix principis-rupprechtii forest plots. – Forest Ecosystems, 7, 52. https://doi.org/10.1186/s40663-020-00262-z. ZouJ. HouW. ChenL. WangQ. ZhongP. ZuoY. LuoS. LengP. 2020 Evaluating the impact of sampling schemes on leaf area index measurements from digital hemispherical photography in Larix principis-rupprechtii forest plots Forest Ecosystems 7 52 https://doi.org/10.1186/s40663-020-00262-z. Search in Google Scholar

eISSN:
1736-8723
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Plant Science, Ecology, other