Acceso abierto

Exposure to a single immobilization or lipopolysaccharide challenge increases expression of genes implicated in the development of Alzheimer’s disease in the mice brain cortex


Cite

Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, O’Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T. Inflammation and Alzheimer’s disease. Neurobiol Aging 21, 383–421, 2000.10.1016/S0197-4580(00)00124-XOpen DOISearch in Google Scholar

Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, Myczek K, Green KN, Baram TZ, LaFerla FM. Short-term modern life-like stress exacerbates Abeta-pathology and synapse loss in 3xTg-AD mice. J Neurochem 134, 915–926, 2015.10.1111/jnc.13195479211826077803Search in Google Scholar

Biber K, Neumann H, Inoue K, Boddeke HW. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci 30, 596–602, 2007.1795092610.1016/j.tins.2007.08.00717950926Search in Google Scholar

Bidzhekov K, Zernecke A, Weber C. MCP-1 induces a novel transcription factor with proapoptotic activity. Circ Res 98, 1107–1109, 2006.10.1161/01.RES.0000223483.12225.8016690887Search in Google Scholar

Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8, 57–69, 2007.10.1038/nrn203817180163Search in Google Scholar

Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, Almeida OF. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry 14, 95–105, 2009.1791224910.1038/sj.mp.400210117912249Search in Google Scholar

Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8, 1254–1266, 2012.10.7150/ijbs.4679349144923136554Search in Google Scholar

Filipcik P, Novak P, Mravec B, Ondicova K, Krajciova G, Novak M, Kvetnansky R. Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: up-regulation by stress. Cell Mol Neurobiol 32, 837–845, 2012.2222243910.1007/s10571-011-9788-922222439Search in Google Scholar

Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci 26, 9047–9056, 2006.10.1523/JNEUROSCI.2797-06.2006667533516943563Open DOISearch in Google Scholar

Guerriero F, Sgarlata C, Francis M, Maurizi N, Faragli A, Perna S, Rondanelli M, Rollone M, Ricevuti G. Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res 29, 821–831, 2017.10.1007/s40520-016-0637-z2771817327718173Open DOISearch in Google Scholar

Huang NQ, Jin H, Zhou SY, Shi JS, Jin F. TLR4 is a link between diabetes and Alzheimer’s disease. Behav Brain Res 316, 234–244, 2017.10.1016/j.bbr.2016.08.047Search in Google Scholar

Chong Y. Effect of a carboxy-terminal fragment of the Alzheimer’s amyloid precursor protein on expression of proinflammatory cytokines in rat glial cells. Life Sci 61, 2323–2333, 1997.10.1016/S0024-3205(97)00936-3Open DOISearch in Google Scholar

Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I. Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9, 151, 2012.2274775310.1186/1742-2094-9-151348316722747753Search in Google Scholar

Kvetnansky R, Mikulaj L. Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87, 738–743, 1970.10.1210/endo-87-4-7385453288Search in Google Scholar

Lai AY, McLaurin J. Clearance of amyloid-beta peptides by microglia and macrophages: the issue of what, when and where. Future Neurol 7, 165–176, 2012.10.2217/fnl.12.6338006422737039Search in Google Scholar

Le MH, Weissmiller AM, Monte L, Lin PH, Hexom TC, Natera O, Wu C, Rissman RA. Functional impact of corticotropin-releasing factor exposure on Tau phosphorylation and axon transport. PLoS One 11, e0147250, 2016.2679009910.1371/journal.pone.0147250472040226790099Search in Google Scholar

Liu X, Wu Z, Hayashi Y, Nakanishi H. Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience 216, 133–142, 2012.10.1016/j.neuroscience.2012.04.05022554776Search in Google Scholar

Liu YZ, Wang YX, Jiang CL. Inflammation: The common pathway of stress-related diseases. Front Hum Neurosci 11, 316, 2017.10.3389/fnhum.2017.00316547678328676747Open DOISearch in Google Scholar

Marklund N, Farrokhnia N, Hanell A, Vanmechelen E, Enblad P, Zetterberg H, Blennow K, Hillered L. Monitoring of beta-amyloid dynamics after human traumatic brain injury. J Neurotrauma 31, 42–55, 2014.10.1089/neu.2013.296423829439Search in Google Scholar

Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and aging: the role of the TREM2–DAP12 and CX3CL1CX3CR1 axes. Int J Mol Sci 19, 318, 2018.10.3390/ijms19010318579626129361745Search in Google Scholar

Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. Retrograde inflammatory signaling from neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin Invest 100, 2752–2756, 1997.938973910.1172/JCI119821Search in Google Scholar

Moraes CF, Lins TC, Carmargos EF, Naves JO, Pereira RW, Nobrega OT. Lessons from genome-wide association studies findings in Alzheimer’s disease. Psychogeriatrics 12, 62–73, 2012.10.1111/j.1479-8301.2011.00378.xSearch in Google Scholar

Muller UC, Deller T, Korte M. Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18, 281–298, 2017.10.1038/nrn.2017.29Open DOISearch in Google Scholar

Murakami N, Yamaki T, Iwamoto Y, Sakakibara T, Kobori N, Fushiki S, Ueda S. Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. J Neurotrauma 15, 993–1003, 1998.10.1089/neu.1998.15.993Open DOISearch in Google Scholar

Nakano Y, Furube E, Morita S, Wanaka A, Nakashima T, Miyata S. Astrocytic TLR4 expression and LPS-induced nuclear translocation of STAT3 in the sensory circumventricular organs of adult mouse brain. J Neuroimmunol 278, 144–158, 2015.10.1016/j.jneuroim.2014.12.013Search in Google Scholar

Novak P, Cente M, Kosikova N, Augustin T, Kvetnansky R, Novak M, Filipcik P. Stress-induced alterations of immune profile in animals suffering by Tau protein-driven neurodegeneration. Cell Mol Neurobiol 38, 243–259, 2018.10.1007/s10571-017-0491-328405903Open DOISearch in Google Scholar

Piirainen S, Youssef A, Song C, Kalueff AV, Landreth GE, Malm T, Tian L. Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer’s disease: the emerging role for microglia? Neurosci Biobehav Rev 77, 148–164, 2017.10.1016/j.neubiorev.2017.01.046Search in Google Scholar

Ringheim GE, Szczepanik AM, Petko W, Burgher KL, Zhu SZ, Chao CC. Enhancement of beta-amyloid precursor protein transcription and expression by the soluble interleukin-6 receptor/interleukin-6 complex. Brain Res Mol Brain Res 55, 35–44, 1998.964595810.1016/S0169-328X(97)00356-2Search in Google Scholar

Rissman RA, Lee KF, Vale W, Sawchenko PE. Corticotropin-releasing factor receptors differentially regulate stressinduced tau phosphorylation. J Neurosci 27, 6552–6562, 2007.10.1523/JNEUROSCI.5173-06.2007Open DOISearch in Google Scholar

Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, Faggioni R, Luini W, van Hinsbergh V, Sozzani S, Bussolino F, Poli V, Ciliberto G, Mantovani A. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6, 315–325, 1997.10.1016/S1074-7613(00)80334-9Open DOISearch in Google Scholar

Sathyanesan M, Haiar JM, Watt MJ, Newton SS. Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice. Stress 20, 197–204, 2017.2827415210.1080/10253890.2017.1298587Search in Google Scholar

Shen X, Chen J, Li J, Kofler J, Herrup K. Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro 3, ENEURO.0124–0115.2016, 2016.10.1523/ENEURO.0124-15.2016Search in Google Scholar

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3, 1101–1108, 2008.10.1038/nprot.2008.7318546601Open DOISearch in Google Scholar

Small SA, Duff K. Linking Abeta and tau in late-onset Alzheimer’s disease: a dual pathway hypothesis. Neuron 60, 534–542, 2008.10.1016/j.neuron.2008.11.007Search in Google Scholar

Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82, 756–771, 2014.10.1016/j.neuron.2014.05.004Open DOISearch in Google Scholar

White JD, Peterman JL, Hardy A, Eimerbrink MJ, Paulhus KC, Thompson MA, Chumley MJ, Boehm GW. Prior exposure to repeated peripheral LPS injections prevents further accumulation of hippocampal beta-amyloid. Brain Behav Immun 66, e12–e13, 2017.10.1016/j.bbi.2017.07.056Search in Google Scholar

Wohleb ES, McKim DB, Sheridan JF, Godbout JP. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci 8, 447, 2014.10.3389/fnins.2014.00447Search in Google Scholar

Wolf Y, Yona S, Kim KW, Jung S. Microglia, seen from the CX3CR1 angle. Front Cell Neurosci 7, 26, 2013.10.3389/fncel.2013.00026Search in Google Scholar

Yamamoto M, Horiba M, Buescher JL, Huang D, Gendelman HE, Ransohoff RM, Ikezu T. Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. Am J Pathol 166, 1475–1485, 2005.10.1016/S0002-9440(10)62364-4Search in Google Scholar

Yamamoto M, Kiyota T, Walsh SM, Ikezu T. Kinetic analysis of aggregated amyloid-beta peptide clearance in adult bone-marrow-derived macrophages from APP and CCL2 transgenic mice. J Neuroimmune Pharmacol 2, 213–221, 2007.10.1007/s11481-006-9049-818040846Search in Google Scholar

Yi MH, Zhang E, Kang JW, Shin YN, Byun JY, Oh SH, Seo JH, Lee YH, Kim DW. Expression of CD200 in alternative activation of microglia following an excitotoxic lesion in the mouse hippocampus. Brain Res 1481, 90–96, 2012.10.1016/j.brainres.2012.08.05322975132Search in Google Scholar

Zhang C, Kuo CC, Moghadam SH, Monte L, Campbell SN, Rice KC, Sawchenko PE, Masliah E, Rissman RA. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer’s disease. Alzheimers Dement 12, 527–537, 2016.10.1016/j.jalz.2015.09.007486018226555315Open DOISearch in Google Scholar

Zhao J, O’Connor T, Vassar R. The contribution of activated astrocytes to Abeta production: implications for Alzheimer’s disease pathogenesis. J Neuroinflammation 8, 150, 2011.10.1186/1742-2094-8-150321600022047170Search in Google Scholar

Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, Younce C, Binkley PF, Kolattukudy PE. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98, 1177–1185, 2006.10.1161/01.RES.0000220106.64661.71152342516574901Search in Google Scholar

eISSN:
1336-0329
Idioma:
Inglés