Acceso abierto

Low-Temperature Oxidation of CO in Smoke: A Review


Cite

The low-temperature catalytic oxidation of CO has been reviewed, targeting its possible application to cigarette smoke. The treatment of CO in smoke by using a filter-packed catalyst is extremely complicated by the presence of a variety of chemically active gaseous compounds, a particulate phase, the high velocity of pulsing smoke flow, and ambient temperature. The relevant mechanisms of catalysis and the catalyst preparation variables that could help to overcome these problems are considered. Possible contributors to the overall kinetics that must include variety of diffusion processes were briefly discussed. The chemisorption of O2, CO and CO2 on Pd, Pt and Au and on partially reducible supports, surface reactions and oscillations of the CO oxidation rate were analyzed. The effects of the surface structure and electronic properties of the catalyst support, preparation conditions and presence of a second transition metal on the projected CO oxidation activity of the catalysts in smoke are also discussed. The reviewed catalyst preparation approaches can solve the low-temperature catalyst activity problem. However, more work is required to stabilize this activity of an air-exposed catalyst to provide a necessary shelf life for a cigarette. The greatest challenge seems to be a particular phase - exclusive selectivity that would not contradict with the necessary fast diffusion of gases through the catalyst pores.

eISSN:
1612-9237
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Conocimientos generales, Ciencias de la vida, otros, Física