Acceso abierto

Low-Temperature Oxidation of CO in Smoke: A Review


Cite

1. Snytnikov, P.V., V.A. Sobianin, V.D. Belyaev, B.G. Tsyrulnikov, N.B. Shitova and D.A. Shlyapin: Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts; Appl. Catal. A: Gen. 239 (2003) 149-156.Search in Google Scholar

2. Farrauto, R.J. and R.M. Heck: Environmental catalysis into the 21st century; Catal. Today 55 (2000) 179-187.Search in Google Scholar

3. Centi, G., P. Ciambelli, S. Perathoner and P. Russo: Environmental catalysis: trends and outlook; Catal. Today 75 (2002) 3-15.Search in Google Scholar

4. Rodgman, A. and CR. Green: Toxic chemicals in cigarette mainstream smoke - Hazard and hoopla; Beitr. Tabakforsch. Int. 20 (2003) 481-545.Search in Google Scholar

5. Lee, J.S., E.D. Park, and B.J. Song: Process development for low temperature CO oxidation in the presence of water and halogen compounds; Catal. Today 54 (1998) 57-64.Search in Google Scholar

6. Baker, R.R.: Formation of carbon oxides during tobacco combustion. Pyrolysis studies in the presence of isotopic gases to elucidate reaction sequence; J. Anal. Appl. Pyrol. 4 (1993) 297-334.Search in Google Scholar

7. Li, P., D.E. Miser, S. Rabiei, R.T. Yadav, and M.R. Hajaligol: The removal of carbon monoxide by iron oxide nanoparticles; Appl. Catal. B: Environ. 43 (2003) 151-162.Search in Google Scholar

8. Dyakonov, AJ.: Abatement of CO from relatively simple and complex mixtures. II. Oxidation on Pd-Cu/C catalysts; Appl. Catal. B: Environ. 45 (2003) 257-267.Search in Google Scholar

9. Sirijaruphan, A., J.G. Goodwin, Jr, R.W. Rice, D. Wei, K.R. Butcher, G.W. Roberts, and J.J. Spivey: Metal foam supported Pt catalysts for the selective oxidation of CO in hydrogen; Appl. Catal. A: Gen. 281 (2005) 1-9.Search in Google Scholar

10. Ahluwalia, R.K., Q.Z. Zhang, D.J. Cmielewski, K.C. Lauzze, and M.A. Inbody: Performance of CO preferential oxidation reactor with noble metal catalyst coated on ceramic monolith for on-board fuel processing application; Catal. Today 99 (2005) 271-283.Search in Google Scholar

11. Wang, J.B., D.H. Tsai, and T.J. Huang: Synergistic catalysis of carbon monoxide oxidation over copper oxide supported on samaria-doped ceria; J. Catal. 208 (2002) 370-380.Search in Google Scholar

12. Wu, K.C, Y.L. Tung, Y.L. Chen, and Y.W. Chen: Catalytic oxidation of carbon monoxide over gold/iron hydroxide catalyst at ambient conditions; Appl. Catal. B: Environ. 53 (2004) 111-116.Search in Google Scholar

13. Okumura, M., N. Masuyama, E. Konishi, S. Ichikawa, and T. Akita: CO oxidation below room temperature over Ir/TiO2 catalyst prepared by deposition precipitation method; J. Catal. 208 (2002) 485.Search in Google Scholar

14. Li, P., F. Rasouli, and M.R. Hajaligol: Application of nanoparticle iron oxide in cigarette for simultaneous CO and NO removal in the mainstream smoke; Beitr. Tabakforsch. Int. 21 (2004) 1-8.Search in Google Scholar

15. Reddy, B. V., F. Rasouli, M. R. Hajaligol, and S. N. Khanna: Novel pathway for CO oxidation on a Fe2O3 cluster; Chem. Phys. Letters 384(4-6) (2004) 242-245.Search in Google Scholar

16. Tibiletti, D., E.A. Bart de Graaf, S.P. Teh, G. Rothenberg, D. Farrusseng, and C. Mirodatos: Selective CO oxidation in the presence of hydrogen: fast parallel screening and mechanistic studies on ceria-based catalysts; J. Catal. 225 (2004) 489-497.Search in Google Scholar

17. Avgouropoulos, G., T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, and H.K. Matralis: A compa-rative study of Pt/Al2O3, Au/Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen; Catal. Today 75 (2002) 157.Search in Google Scholar

18. Avgouropoulos, G. and T. Ionnides: Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method; Appl. Catal. A: Gen. 244 (2003) 155-167.Search in Google Scholar

19. Zhang, W.J., S. PalDey, and S. Deevi: Effect of moisture on the active species in Cu-CeO2 catalyst; Appl. Catal. A: Gen. 295 (2005) 201-208.Search in Google Scholar

20. Deevi, S. and S. PalDey: Nanocomposite copper-ceria catalysts for low temperature or new-ambient temperature catalysis and methods for making such catalysts; US Patent 6857431, 2005.Search in Google Scholar

21. Zhang, S.M., W.P. Huang, X.H. Qiu, B.Q. Li, X.C. Zheng, and S.H. Wu: Comparative study on catalytic properties for low-temperature CO oxidation on Cu/CeO2 and CuO/CeO2 prepared via solvated metal atom impregnation and conventional impregnation; Catal. Lett. 80 (2002) 41-46.Search in Google Scholar

22. Broqvist, P., I. Panas, and H. Person: A DRT study on CO oxidation over Co3O4; J. Catal. 210 (2002) 198-206.Search in Google Scholar

23. Kang, M., M.W. Song, and CH. Lee: Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts; Appl. Catal. A: Gen. 251 (2003) 143-156.Search in Google Scholar

24. Park, J.W., J.H. Jeong, W.L Yoon, H. Jung, H.T. Lee, D.K. Lee, Y.K. Park, and Y.W. Rhee: Activity and characterization of the Co-promoted Cu-CeO2/y-Al2O3 catalyst for the selective oxidation of CO in excess hydrogen; Appl. Catal. A: Gen. 274 (2004) 25-32.Search in Google Scholar

25. Keggi, J.J.: Improved water gas shift process; UK Patent 1201623, 1970.Search in Google Scholar

26. Utaka, T., T.R. Kikuchi, and K. Eguchi: CO removal from reformed fuels over Cu and precious catalysts; Appl. Catal. A: Gen. 246 (2003) 117-124.Search in Google Scholar

27. Coq, B. and F. Figueras: Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance; J. Molec. Catal. A: Chem. 173 (2001) 117-134.Search in Google Scholar

28. Toebes, M. L., J. A. van Dillen, and K. P. de Jong: Synthesis of supported palladium catalysts; J. Molec. Catal. A: Chem. 173 (2001) 75–98.Search in Google Scholar

29. Stakheev, A.Y. and L.M. Kustov: Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s; Appl. Catal. A: Gen. 188 (1998) 3–35.Search in Google Scholar

30. Leontiou, A.A., A.K. Lavados, G.S. Armatas, P.N. Trikalitis, and P.J. Pomonis: Kinetics investigation of NO+CO reaction on La-Sr-Mn-O perovskite-type mixed oxides; Appl. Catal. A: Gen. 263 (2004) 227–239.Search in Google Scholar

31. Dai, H., H. He, P. Li, L. Gau, and C.T. Au: The relationship of structural effect-redox property-catalytic performance of perovskites and their related compounds for CO and NOx removal; Catal. Today 90 (2004) 231–244.Search in Google Scholar

32. PalDey, S., S. Gedevanishvili, W. Zhang, and F. Rasouli: Evaluation of a spinel based pigment system as a CO oxidation catalyst; Appl. Catal. B: Environ. 56-3 (2005) 241–250.Search in Google Scholar

33. Wang, A., L. Ma, Y. Cong, T. Zhang, and D. Liang: Unique properties of Ir/ZSM-5 catalyst for NO reduction with CO in the presence of excess oxygen; Appl. Catal. B: Environ. 40 (2003) 319–329.Search in Google Scholar

34. Villani, K., R. Brosius, and J.A. Martens: Catalytic carbon oxidation over Ag/Al2O3; J. Catal. 236 (2005) 172–175.Search in Google Scholar

35. Zhdanov, V.P.: Mechanism and kinetics of the NO-CO reaction on Rh; Surface Science Reports 29 (1997) 31–90.Search in Google Scholar

36. Salem, I.: Recent studies on the catalytic activity of titanium, zirconium and hafnium oxides; Catal. Rev. Sci. and Eng. 45-2 (2003) 405–496.Search in Google Scholar

37. Luo, T., J.M. Vohs, and R.J. Gorte: An examination of sulfur poisoning on Pd/Ceria catalysts; J. Catal. 210 (2002) 397–404.Search in Google Scholar

38. Centi, G.: Supported palladium catalysts in environ-mental catalytic technologies for gaseous emissions; J. Molec. Catal. A: Chem. 173 (2001) 287–312.Search in Google Scholar

39. Albers, P., J. Pietsch, and S.F. Parker: Poisoning and deactivation of palladium catalysts; J. Molec. Catal. A: Chem. 173 (2001) 275–286.10.1016/S1381-1169(01)00154-6Search in Google Scholar

40. Bi, Y. and G. Lu: Catalytic CO oxidation over palladium supported NaZSM-5 catalysts; Appl. Catal. B: Environ. 41 (2003) 279–286.Search in Google Scholar

41. Wootsch, A., C. Descorme, and D. Duprez: Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and alumina-supported Pt catalysts; J. Catal. 225 (2004) 259–266.Search in Google Scholar

42. Ramaker, D.E., J. de Graaf, J.A.R. van Veen, and D.C. Koningsberger: Nature of the metal-support interaction in supported Pt catalysts: Shift in Pt valence orbital energy and charge rearrangement; J. Catal. 203 (2001) 7–17.Search in Google Scholar

43. Damyanova, S., C.A. Perez, M. Schmal, and J.M.C. Bueno: Characterization of ceria-coated alumina carrier; Appl. Catal. A: Gen. 234 (2002) 271–282.Search in Google Scholar

44. Zhu, H., Z. Qin, W. Shan, W. Shen, and J. Wang: Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: TPR study with H2 and CO as reducing agents; J. Catal. 225 (2004) 267–277.Search in Google Scholar

45. Uner, D., N.A. Tapan, I. Ozen, and M. Uner: Oxygen adsorption on Pt/TiO2 catalysts; Appl. Catal. A: Gen. 251 (2003) 225–234.Search in Google Scholar

46. Ertl, G.: Nonlinear dynamics: Oscillatory kinetics and spatio-temporal pattern formation; in: Handbook on Heterogeneous Catalysis, Vol. 3, edited by G. Ertl, H. Knozinger, and J. Weitkamp, Wiley-VCH, Weinheim, 1997, pp. 1032–1051.Search in Google Scholar

47. Ma, Z.Y., C. Yang, W. Wei, W.H. Li, and Y.H. Sun: Surface properties and CO adsorption on zirconia polymorphs; J. Molec. Catal. A: Chem. 227 (2005) 119–124.Search in Google Scholar

48. Iida, H. and A. Igarashi: Characterization of a Pt/TiO2 (rutile) catalyst for water gas shift reaction at low temperature; Appl. Catal. A: Gen. 298 (2006) 152–160.Search in Google Scholar

49. Klie, R.F., M.M. Disko, and N.D. Browning: Atomic scale observations of the chemistry at the metal-oxide interface in heterogeneous catalysts; J. Catal. 205 (2002) 1–6.Search in Google Scholar

50. Weng, L.T. and B. Delmon: Phase cooperation and remote control effects in selective oxidation catalysts; Appl. Catal. A: Gen. 81 (1992) 141–213.Search in Google Scholar

51. Mirkelamoglu, B. and G. Karakas: CO oxidation over platinum- and sodium-promoted tin oxide: catalyst characterization and temperature-programmed studies; Appl. Catal. A: Gen. 281 (2005) 275–284.Search in Google Scholar

52. Gurda, G. and T. Hahn: The oxidation of carbon monoxide on platinum-supported binary oxide catalysts; Appl. Catal. A: Gen. 192 (2000) 51–55.Search in Google Scholar

53. Bourane, A. and D. Bianchi: Oxidation of CO on a Pt/Al2O3 catalyst: From the surface elementary steps to light-off tests. III. Experimental and kinetic model for light-off tests in excess CO; J. Catal. 209 (2002) 126–134.Search in Google Scholar

54. Hoebink, J.H.B.J., J.P. Huinink, and G.B. Marin: A quantitative analysis of transient kinetic experiments: The oxidation of CO by O2 over Pt; Appl. Catal. A: Gen. 160 (1997) 139–151.Search in Google Scholar

55. Kotobuki, M., A. Watanabe, H. Uchida, H. Yamashita, and M. Watanabe: Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts; J. Catal. 236 (2005) 262–269.Search in Google Scholar

56. Schmal, M., M.A.S. Baldanza, and M.A. Vannice: Pd-xMo/Al2O3 catalysts for NO reduction by CO; J. Catal. 185 (1999) 138–151.Search in Google Scholar

57. Fernandez-Garcia, M., A. Martinez-Arias, C. Belver, J.A. Anderson, J.C. Conesa, and J. Soria: Behavior of palladium-copper catalysts for CO and NO elimination; J. Catal. 190 (2000) 387–395.Search in Google Scholar

58. Gadgil, M.M. and S.K. Kulshreshta: CO oxidation over Pd/FeSbO4 catalyst; J. Molec. Catal. A: Chem. 95 (1995) 211–222.10.1016/1381-1169(94)00027-1Search in Google Scholar

59. Kapoor, M.P., A. Raj, and Y. Matsumura: Methanol decomposition over supported mesoporous CeO2-ZrO2 mixed oxides; Micropor. Mesopor. Mater. 44-5 (2001) 565–572.Search in Google Scholar

60. Guerrero-Ruiz, A., S. Yang, Q. Xin, A. Maroto-Valiente, M. Benito-Gonzalez, and I. Rodriguez-Ramos: Comparative study by infrared spectroscopy and microcalorimetry of the CO adsorption over supported palladium catalysts; Langmuir 16 (2000) 8100–8106.Search in Google Scholar

61. Tsou, J., P. Magnoux, M. Guinset, J.J.M. Orfao, and J.L. Figueredo: Oscillations in the catalytic oxidation of volatile organic compounds; J. Catal. 225 (2004) 147–154.Search in Google Scholar

62. Tappe, W., U. Korte, and G. Meyer-Ehmsen: RHED structure analysis of the oscillatory catalytic oxidation at Pt (110) surfaces; Surf. Sci. 338 (1997) 162–176.Search in Google Scholar

63. Granger, P., J.J. Lecomte, L. Leclercq, and G. Leclercq: Kinetics of the CO+O2 reaction over three-way Pt-Rh catalysts; Appl. Catal. A: Gen. 217 (2001) 257–267.Search in Google Scholar

64. Fanson, P.T., W.N. Deglass, and J. Lauterbach: Island formation during kinetic rate oscillations in the oxidation of CO over Pt/SiO2: A transient Fourier transform infrared study; J. Catal. 204 (2001) 35–52.Search in Google Scholar

65. Kurkina, E.S. and N.L. Semendyaeva: Fluctuation-induced transitions and oscillations in catalytic CO oxidation; Surf. Sci. 558 (2004) 112–134.Search in Google Scholar

66. Zhdanov, V.P. and B. Kasemo: Simulation of kinetic oscillations in the CO+O2/Pt reaction on nm scale; J. Catal. 214 (2003) 121–129.Search in Google Scholar

67. Yan, C.C.S., W.T. Chuang, A. Chaudhari, and S.L. Lee: Lattice model studies of CO oxidation kinetic oscillation over nano-scaled Pt particle: Effect of temperature variation and diffusion; Appl. Surf. Sci. 252 (2005) 784–792.Search in Google Scholar

68. Baily, C.J., M. Surman, and A.E. Russell: Investi-gation of the CO induced lifting of the (1×2) recon-struction on Pt{110} using synchrotron far-infrared RAIRS; Surf. Sci. 523 (2003) 111–117.Search in Google Scholar

69. Lund, C.D., C.M. Surko, M.B. Maple, and S.Y. Yamamoto: Model discrimination in oscillatory CO oxidation on platinum catalysts at atmospheric pressure; Surf. Sci. 479 (2000) 413–425.Search in Google Scholar

70. Gorodetskii, V.V. and W. Drachsel: Kinetic oscillations and surface waves in catalytic CO+O2 reaction on Pt surface. Field electron microscope, field ion microscope and high-resolution electron energy loss studies; Appl. Catal. A: Gen. 188 (1998) 267–275.Search in Google Scholar

71. Lucas, C.A., N.M. Markovic, M. Ball, V. Stamen-kovoc, V. Climent, and P.N. Ross: Surface structure, and relaxation during the oxidation of carbon monoxide on Pt-Pd; Surf. Sci. 479 (2001) 241–246.Search in Google Scholar

72. Gruyters, M., T. Ali, and D.A. King: Theoretical inquiry into the microscopic origins of the oscillatory CO oxidation reaction on Pt{100}; J. Phys. Chem. 100 (1996) 14417–14423.Search in Google Scholar

73. Bourane, A. and D. Bianchi: Oxidation of CO on a Pt/Al2O3 catalyst: from the surface elementary steps to light-off tests. I. Kinetic Study of the Oxidation of the Linear CO Species; J. Catal. 202 (2001) 34–44.Search in Google Scholar

74. Cimino, A. and F.S. Stone: Oxide solid solutions as catalysts; Adv. Catal. 47 (2000) 141–306.Search in Google Scholar

75. Boaro, M., F. Giordano, S. Recchia, V.D. Santo, M. Giona, and A. Trovarlli: On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts; Appl. Catal. B: Environ. 52 (2004) 225–237.Search in Google Scholar

76. Liu, X., O. Korotkikh, and R. Farrauto: Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst; Appl. Catal. A: Gen. 226 (2002) 293–303.Search in Google Scholar

77. Sirijaruphan, A., Jr. J.G. Goodwin, and R.W. Rice: Effect of Fe promotion on the surface reaction parameters of Pt/(-Al2O3 for the selective oxidation of CO; J. Catal. 224 (2004) 304–131.Search in Google Scholar

78. Berndt, M. and P. Landri: An overview about Engelhard approach to non-standard environmental catalysis; Catal. Today 75 (2002) 17–22.Search in Google Scholar

79. Savio, L., M. Vattuone, L. Rocca, F. Buatier de Mongeot, G. Comelli, A. Baraldi, S. Lizzit, and G. Paolucci: Formation of channels for oxygen migration towards subsurface sites by CO oxidation and growth of the surface oxide phase on Ag(001); Surf. Sci. 506 (2002) 213–222.Search in Google Scholar

80. Qu, Z., M. Cheng, W. Huang, and X. Bao: Formation of sub-surface oxygen species an its high activity toward CO oxidation over silver catalysts; J. Catal. 229 (2005) 446–458.Search in Google Scholar

81. Kim, S., R. Merkle, and J. Maier: Oxygen non-stoichiometry of nanosized ceria powder; Surf. Sci. 549 (2004) 196–202.Search in Google Scholar

82. Zhao, Q., X. Wang, and T. Cai: The study of surface properties of ZrO2; Appl. Surf. Sci. 225 (2004) 7–13.Search in Google Scholar

82. Bedrane, S., C. Descorme, and D. Duprez: Investi-gation of the oxygen storage process on ceria- and ceria-zirconia-supported catalysts; Catal. Today 75 (2002) 401–405.Search in Google Scholar

84. Nijhuis, T.A., M. Makkee, A.D. van Langeveld, and J.A. Moulijn: New insights in the platinum-catalyzed CO oxidation kinetic mechanism by using an advanced CO oxidation kinetic mechanism by using an advanced TAP reactor system; Appl. Catal. A: Gen. 164 (1997) 237–249.Search in Google Scholar

85. Boulahouche, A., G. Kons, H.G. Lintz, and P. Schultz: Oxidation of carbon monoxide on platinum-tin dioxide catalysts at low temperatures; Appl. Catal. A: Gen. 91 (1992) 115–123.Search in Google Scholar

86. Glassey, W.V. and R. Hoffman: A molecular orbital study of surface-adsorbate interactions during the oxidation of CO on the Pt (111) surface; Surf. Sci. 475 (2001) 47–60.Search in Google Scholar

87. Daniells, S.T., A.R. Overweg, M. Makkee, and J.A. Moulijn: The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mossbauer, FT-IR, and TAP reactor study; J. Catal. 230 (2005) 52–65.Search in Google Scholar

88. Dyakonov, A.J. and D.A. Grider: “A smoking article including a selective carbon monoxide pump”, Patent WO 0243514, June 6, 2002.Search in Google Scholar

89. Davis, R.J.: New perspectives on basic catalysts and catalyst support; J. Catal. 216 (2003) 396–405.Search in Google Scholar

90. Aylor, A.W., L.J. Lobree, J.A. Reimer, and A.T. Bell: Investigations of the dispersion of Pd in H-ZSN-5; J. Catal. 172 (1997) 453–462.Search in Google Scholar

91. Lobree, L.J., I.-C. Hwang, J.A. Reimer, and A.T. Bell: Investigations of the state of Fe in H-ZSN-5. J; Catal. 186 (1999) 242–253.Search in Google Scholar

92. Kim, D.H., S.I. Woo, and O. Yang: Effect of pH in a sol-gel synthesis on the physicochemical properties of Pd-alumina three-way catalyst; Appl. Catal. B: Environ. 26 (2000) 285–289.Search in Google Scholar

94. Shen, W.J. and Y. Matsumura: Interaction between palladium and the support in Pd/CeO2 prepared by deposition-precipitation method and the catalytic activity for methanol decomposition; J. Molec. Catal. A: Chem. 153 (2000) 165–168.Search in Google Scholar

95. Ichikawa, M.: “Ship-in-bottle” catalyst technology; Platinum Metals Rev. 44 (2000) 3–14.Search in Google Scholar

96. Fukuoka, A., N. Higashimoto, Y. Sakamoto, M. Sasaki, N. Sugimoto, S. Inagaki, Y. Fukushima, and M. Ichikawa: Ship-in-bottle synthesis and catalytic performances of platinum carbonyl clusters, nano-wires, and nanoparticles in micro- and mesoporous materials; Catal. Today 66 (2001) 23–31.Search in Google Scholar

97. Margitfalvi, J., I. Borbath, K. Lazar, E. Tfirst, A. Szegedi, M. Hegeds, and S. Gbolos: In situ characterization of Sn-PtSiO2 catalysts used in low temperature oxidation of CO; J. Catal. 203 (2001) 94–103.Search in Google Scholar

98. Margitfalvi, J., I. Borbath, M. Hegedus, A. Szegedi, E. Tfirst, K. Lazar, S. Gbolos, and S. Kristyan: Low temperature oxidation of CO over tin-modified Pt/SiO2 catalyst; Catal. Today 73 (2002) 343–353.Search in Google Scholar

99. Colen, R.E.R., M. Kolodziejczyk, B. Delmon, and J.H. Block: Kinetic study of CO oxidation on copper modified Pt (111); Surf. Sci. 412–413 (1998) 447–457.Search in Google Scholar

100. Mergler, Y.J., A. van Aalst, J. van Delft, and B.E. Nieuwenhuys: CO oxidation over promoted Pt catalysts; Appl. Catal. B: Environ. 10 (1996) 245–261.Search in Google Scholar

101. Khanra, B.C. and M. Menon: Role of adsorption on surface composition of Pd-Cu nanoparticles; Physica B 270 (1998) 307–312.Search in Google Scholar

102. Rochefort, A. and R. Fournier: Quantum chemical study of CO and NO bonding to Pd, Cu and PdCu; J. Phys. Chemistry 100 (1996) 13506–13513.Search in Google Scholar

103. Shou, M., K. Tanaka, K. Yoshioka, Y. Morooka, and S. Nagano: New catalyst for selective oxidation of CO in excess H2 designing of the active catalyst having different optimum temperature; Catal. Today 90 (2004) 255–261.Search in Google Scholar

104. Takeguchi, T., O. Takeoh, S. Aoyama, J. Ueda, R. Kikuchi, and K. Eguchi: Strong chemical interaction between PdO and SnO2 and the influence on catalytic combustion of methane; Appl. Catal. A: Gen., 252 (2003) 205–214.Search in Google Scholar

105. Jerdev, D.I. and B.E. Koel: Oxidation of ordered Pt-Sn surface alloys by O2; Surf. Sci. 492 (2001) 1066–114.Search in Google Scholar

106. Kulshreshtha, S.K. and M.M. Gadgil: Physico-chemical characteristics and CO oxidation over Pd/ (Mn2O3+SnO2) catalyst; Appl. Catal. B: Environ. 11 (1997) 291–305.Search in Google Scholar

107. Konsolakis, M., I.V. Yentekakis, A. Palermo, and R.M. Lambert: Optimal promotion by rubidium of the CO+NO reaction over Pt/(-Al2O3 catalysts; Appl. Catal. B: Environ. 33 (2001) 293–302.Search in Google Scholar

108. Iuke, S.E. and F.R. Ahmadun: Adsorption and solid catalyzed reaction between activated carbon impregnated with SnO2 and CO at ordinary temperatures; Appl. Surf. Sci. 187 (2002) 37–44.Search in Google Scholar

109. Al-Khatib, M.F., S.E. Iyuke, A.B. Mohamad, W.R.W. Daud, A.A.H. Kadhum, A.M. Shariff, and M.A. Yarmo: The effect of impregnation of activated carbon with SnCl2.2H2O on its porosity, surface composition and CO gas adsorption; Carbon 40 (2002) 1929–1936.Search in Google Scholar

109. Ito, S., H. Tanaka, Y. Minemura, S. Kameoka, K. Tomishige, and K. Kunimori: Selective CO oxidation in H2-rich gas over K2CO3-promoted Rh/SiO2 cata-lysts: effect of preparation method; Appl. Catal. A: Gen. 273 (2004) 295–302.Search in Google Scholar

110. Chandler, B.D. and L.P. Pignolet: DRIFTS studies of carbon monoxide coverage on highly dispersed bimetallic Pt-Cu and Pt-Au catalysts; Catal. Today 65 (2001) 39–50.Search in Google Scholar

111. Venezia, A.M., L.F. Liotta, G. Pantaleo, V. La Parola, G. Deganello, A. Beck, Z. Koppany, K. Frey, D. Horvath, and L. Guczi: Activity of SiO2 supported gold-palladium catalysts in CO oxidation; Appl. Catal. A: Gen. 251 (2003) 359–368.Search in Google Scholar

112. Radkevich, V.Z., A.A. Ivko, and Y.G. Egiazarov: Effect of the acid-base properties on the activity of Pd-zeolite catalysts for CO oxidation; Kinet. Catal. 42 (2001) 520–524.Search in Google Scholar

113. Goguet, A., M. Aouine, F.J. Cadete Santos Aires, A. De Mallmann, D. Schweich, and J.P. Candy: Prepa-ration of a Pt/SiO2 catalyst. I. Interaction between platinum tetrammine hydroxide and the silica surface; J. Catal. 209 (2002) 135–144.Search in Google Scholar

114. Yang, C., M. Kalwei, F. Schuth, and K. Chao: Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation; Appl. Catal. A: Gen. 254 (2003) 289–296.Search in Google Scholar

115. Riahi, G., D. Guillemot, M. Polisset-Thfoin, A.A. Khodadadi, and J. Fraissard: Preparation, characteri-zation and catalytic activity of gold-based nano-particles on HY zeolites; Catal. Today 72 (2002) 115–121.Search in Google Scholar

116. Crabb, E.M. and R. Marshall: Properties of alumina supported Pd-Fe and Pt-Fe catalysts prepared using surface organometallic chemistry; Appl. Catal. A: Gen. 217 (2001) 41–53.Search in Google Scholar

117. Farrauto, R.J. and C.H. Bartholomew: Fundamentals of industrial catalytic processes; Blackie Academic & Professional, London, 1997, p. 495.Search in Google Scholar

118. Nowinska, K., M. Sopa, D. Dudko, and M. Mocna: Transition metal salts of heteropoly acids as palladium co-catalysts for Wacker oxidation of butene-1 to MEK; Catal. Lett. 49 (1997) 43–48.Search in Google Scholar

119. De Vos, D.E., B.F. Sels, and P.A. Jacobs: Immo-bilization of homogeneous oxidation catalysts; Adv. Catal. 46 (2001) 1–87.Search in Google Scholar

120. Kim, K.D., I.S. Nam, J.S. Chung, J.S. Lee, S.G. Ryu, and Y.S. Yang: Supported PdCl2-CuCl2 catalysts for carbon monoxide oxidation. I. Effects of catalyst composition and reaction conditions; Appl. Catal. B: Environ. 5 (1994) 1023–115.Search in Google Scholar

121. Park, E.D. and J.S. Lee: Effects of copper on CO oxidation over supported Wacker-type catalysts; J. Catal. 180 (1998) 123–131.Search in Google Scholar

122. Wu, J.C.S. and T.Y. Chang: VOC deep oxidation over Pt catalysts using hydrophobic supports; Catal. Today 44 (1998) 111–118.Search in Google Scholar

123. Yamamoto, Y., T. Matsuzaki, K. Ohdan, and Y. Okamoto: Structure and electronic state of PdCl2-CuCl2 catalysts supported on activated carbon; J. Catal. 161 (1996) 577.Search in Google Scholar

124. Park, E. D., S. H. Choi, and J.S. Lee: Active states of Pd and Cu in carbon-supported Wacker-type catalysts for low-temperature CO oxidation; J. Phys. Chem. B 104 (2000) 5586–5594.Search in Google Scholar

125. Bond, G.C. and D.T. Thompson: Catalysis by gold; Catal. Rev. Sci. and Eng. 41 (1998) 319–388.10.1081/CR-100101171Search in Google Scholar

126. Thompson, D.T.: Perspective on industrial and scientific aspects of gold catalysts; Appl. Catal. A: Gen. 243 (2003) 201–205.Search in Google Scholar

127. Hutchings, G.J.: Catalysis by gold; Catal. Today 100 (2005) 55–61.10.1016/j.cattod.2004.12.016Search in Google Scholar

128. Peters, K.F., P. Steadman, H. Isern, J. Alvarez, and S. Ferrer: Elevated-pressure chemical reactivity of carbon monoxide over Au(111); Surf. Sci. 467 (2000) 10–22.Search in Google Scholar

129. Yuan, Y., K. Asakura, H. Wan, K. Tsai, and Y. Iwasawa: Supported gold catalysts derived from gold complexes and as-precipitated metal hydroxides, highly active for low-temperature CO oxidation; Chem. Lett. (1996) 755.10.1246/cl.1996.755Search in Google Scholar

130. Pillai, U.R. and S. Deevi: Highly active gold-ceria catalyst for the room temperature oxidation of carbon monoxide; Appl. Catal. A: Gen. 299 (2006) 266–273.Search in Google Scholar

131. Piccolo, L., D. Loffreda, F.J. Cadete Santos Aires, C. Deranlot, Y. Jugnet, P. Sautet, and J.C. Bertolini: The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations; Surf. Sci. 566–568 (2004) 995–1000.Search in Google Scholar

132. Giordano, L., G. Pacchioni, T. Bredow, and J.F. Sanz: Cu, Ag, and Au atoms adsorbed on TiO2 (110): cluster and periodic calculations; Surf. Sci. 471 (2001) 21–31.Search in Google Scholar

133. Wang, C.B., H.K. Lin, and C.M. Ho: Effects of addition of titania on the thermal characterization of alumina-supported palladium; J. Molec. Catal. A: Chem. 180 (2002) 285–291.Search in Google Scholar

134. Okumura, M., S. Tsubota, and M. Haruta: Preparation of supported gold catalysts by gas-phase grafting of gold acetylacetonate for low-temperature oxidation of CO and of H2; J. Molec. Catal. A: Chem. 199 (2003) 73–84.Search in Google Scholar

135. Kim, C.H. and L.T. Thompson: Deactivation of Au/CeOx water gas shift catalysts; J. Catal. 230 (2005) 66–74.Search in Google Scholar

136. Lopez, N., J.K. Norskov, T.V.W. Janssens, A. Carlsson, A. Puig-Molina, B.S. Clausen, and J.D. Grunwaldt: The adhesion and shape of nanosized Au particles in Au/TiO2 catalyst; J. Catal. 225 (2004) 86–94.Search in Google Scholar

137. Minato, T., T. Susaki, S. Shiraki, H.S. Kato, M. Kawai, and K. Aika: Investigation of the electronic interaction between TiO2 (110) surfaces and Au clusters by PES and STM; Surf. Sci. 566–568 (2004) 1012–1017.Search in Google Scholar

138. Date, M., Y. Ichihashi, T. Yamashita, A. Chirino, F. Boccuzzi, and M. Haruta: Performance of Au/TiO2 catalyst under ambient conditions; Catal. Today 72 (2002) 89–94.Search in Google Scholar

139. Soares, J.M.C., P. Morrall, A. Crossley, P. Herris, and M. Bowker: Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts; J. Catal. 219 (2003) 17–24.Search in Google Scholar

140. Boccuzzi, F., E. Guglielminotti, F. Pinna, and G. Strukul: Surface composition and reactivity of bimetallic Au-Pt/ZrO2 samples; Surf. Sci. 377–379 (1997) 728.Search in Google Scholar

141. Grunwaldt, J.D., M. Maciejewski, O.S. Becker, P. Fabrizioli, and A. Baiker: Comparative study of Au/TiO2 and Au/ZrO2 catalysts for low-temperature CO oxidation; J. Catal. 186-2 (1998) 458–469.Search in Google Scholar

142. Costello, C.K., M.C. Kung, H.S. Oh, Y. Wang, and H.H. Kung: Nature of the active site for CO oxidation on highly active Au/(-Al2O3; Appl. Catal. A: Gen. 232 (2002) 159–168.Search in Google Scholar

143. Kung, H.H., M.C. Kung, and C.K. Costello: Supported Au catalysts for low temperature CO oxidation; J. Catal. 216 (2003) 425–432.Search in Google Scholar

144. Costello C.K, J.H. Yang, H.Y. Law, Y. Wang, J.N. Lin, L.D. Marks, M.C. Kung, and H.H. Kung: On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3; Appl. Catal. A: Gen. 243 (2003) 15–24.Search in Google Scholar

145. Derrouiche, S. and D. Bianchi: Experiments and kinetic model regarding the induction period observed during the oxidation by O2 of adsorbed CO species on Pt/Al2O3 catalysts; J. Catal. 230 (2005) 359–374.Search in Google Scholar

146. Gottfried, J.M. and K. Christmann: Oxidation of car-bon monoxide over Au (110)-(1x2); Surf. Sci. 566–568 (2004) 1112–1117.Search in Google Scholar

147. Manuel, I., J. Chaubet, C. Thimas, N. Matthess, and G. Diega-Mariadassou: Simulation of the transient CO oxidation over Rho/SiO2 and Rhx+/Ce0.68Zr0.32O2 catalysts; J. Catal. 224 (2004) 269–277.Search in Google Scholar

148. Schumacher, B., Y. Denkwitz, V. Plzak, M. Kinne, and R.J. Behm: Kinetics, mechanism, and the influence of H2 on the CO oxidation on a Au/TiO2 catalyst; J. Catal. 224 (2004) 449–462.Search in Google Scholar

149. Manzoli, M., A. Chiorino, and F. Boccuzzi: Interface species and effect of hydrogen on their amount in the CO oxidation on Au/ZnO; Appl. Catal. B: Environ. 52 (2004) 259–266.Search in Google Scholar

150. Jacobs, G., S. Ricote, U.M. Graham, P.M. Patterson, and B.H. Davis: Low temperature water gas shift: Type and loading of metal impact forward decomposition of pseudo-stabilized formate over metal/ceria catalysts; Catal. Today 106 (2005) 259–264.Search in Google Scholar

151. Tabakova, T., F. Boccuzzi, M. Manzoni, J.W. Sobczak, V. Idakiev, and D. Andreeva: A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction; Appl. Catal. A: Gen. 298 (2005) 127–143.Search in Google Scholar

152. Margitfalvi, J.L., M. Hegedus, A. Szegedi, and I. Sajo: Modification of Au/MgO catalysts used in low temperature CO oxidation with Mn and Fe; Appl. Catal. A: Gen. 272 (2004) 87–97.Search in Google Scholar

153. Haruta, M. and M. Date: Advances in the catalysis of Au nanoparticles; Appl. Catal. A: Gen. 222 (2001) 427–437.10.1016/S0926-860X(01)00847-XSearch in Google Scholar

154. Gottfried, J.M., K.J. Schmidt, S.L.M. Schroeder, and K. Christmann: Adsorption of carbon monoxide on Au(110)-(1x2); Surf. Sci. 536 (2003) 206–224.Search in Google Scholar

155. Wang, D., Z. Hao, D. Cheng, X. Shi, and C. Hu: Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/A2O3 cata-lysts; J. Molec. Catal. A: Chem. 200 (2003) 229–238.Search in Google Scholar

157. Minico, S., S. Scire, C. Crisafulli, A.M. Visco, and S. Galvagno: FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature; Catal. Lett. 47 (1997) 273–276.Search in Google Scholar

158. Margitfalvi, J.L., A. Fasi, M. Heged, F. Lonyi, S. Gobolos, and N. Bogdanchikova: Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation; Catal. Today 72 (2002) 157–169.Search in Google Scholar

159. Goossens, A., M.W.J. Craje, A.M. van der Kraan, A. Zwijnenburg, M. Makkee, J.A. Moulijn, and L.J. de Jongh: Supported gold catalysts studied with 197Au Mössbauer effect spectroscopy; Catal. Today 72 (2002) 95–100.Search in Google Scholar

160. Golunski, S., R. Rajaram, N. Hodge, G.J. Hutchings, and C.J. Kiely: Low-temperature redox activity in co-precipitated catalysts: comparison between gold and platinum-group metals; Catal. Today 72 (2002) 107–113.Search in Google Scholar

161. Liu, H., I.A. Kozlov, P.A. Kozlova, T. Shido, K. Asakura, and Y. Iwasawa: Active oxygen species and reaction mechanism for low-temperature CO oxidation on an Fe2O3-supported Au catalyst prepared from Au(PPh3)(NO3) and as-precipitated iron hydroxide; Phys. Chem. Chem. Phys. 1 (1998) 285.Search in Google Scholar

162. Chang, B.K., B.W. Jang, S. Dai, and S.H. Overbury: Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis; J. Catal. 236 (2005) 392–400.Search in Google Scholar

163. Hao, Z., L. Fen, G.Q. Lu, J. Liu, L. An, and H. Wang: In situ electron paramagnetic resonance (EPR) study of surface oxygen species on Au/ZnO catalyst for low-temperature carbon monoxide oxidation; Appl. Catal. A: Gen. 213 (2001) 173–177.Search in Google Scholar

164. Deng, W., J. De Jesus, H. Saltsburg, and M. Flytzani-Stephanopoulos: Low-content gold-ceria catalysts for the water-gas-shift and preferential CO oxidation reactions; Appl. Catal. A: Gen. 291 (2005) 126–135.Search in Google Scholar

165. Cunningham, D.A.H., W. Vogel, H. Kageyama, S. Tsubota, and M. Haruta: The relationship between the structure and activity of nanometer size gold when supported on Mg(OH)2; J. Catal. 177-1 (1998) 1–10.Search in Google Scholar

166. Gluhoi, A.C., M.A.P. Dekkers, and B.E. Nieuwen-huys: Comparative studies of the N2/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold cata-lysts: effect of the addition of various oxides; J. Catal. 219 (2003) 197–205.Search in Google Scholar

167. Schubert, M.M., S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, and R.J. Behm: CO oxidation over supported gold catalysts - “inert” and “active” support materials and their role for the oxygen supply during reaction; J. Catal. 197 (2001) 113–122.Search in Google Scholar

168. Guczi, L., D. Horvath, Z. Paszti, and G. Peto: Effect of treatments on gold nanoparticles: Relation between morphology, electron structure and catalytic activity in CO oxidation; Catal. Today 72 (2002) 101–105.Search in Google Scholar

169. Zhang, G.Y., W.X. Wang, H.L. Lian, D.Z. Jiang, and T.H. Wu: Effect of calcination temperatures and precipitant on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and humid circumstances; Appl. Catal. A: Gen. 239 (2003) 1–10.Search in Google Scholar

170. Kozlov, A.I., D.H. Kim, A. Yezerets, P. Andersen, H.H. Kung, and M.C. Kung: Effect of preparation method and redox treatment on the reducibility and structure of supported ceria-zirconia mixed oxide; J. Catal. 209 (2002) 417–426.Search in Google Scholar

170. Bulgakov, N.N., V.A. Sadykov, V.V. Lunin, and E. Kemmitz: Lattice defects and oxygen absorption in ceria/ceria/zirconia solid solutions: analysis by semi-empirical interacting bonds method; React. Kinet. Catal. Lett. 76 (2002) 103–110.Search in Google Scholar

171. Centeno, M.A., M. Paulis, M. Montes, and J.A. Odriozola: Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 cata-lysts; Appl. Catal. A: Gen. 234 (2002) 65–78.Search in Google Scholar

172. Lin, J.N., J.H. Chen, C.Y. Hsiao, Y.M. Kang, and B.Z. Wan: Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation; Appl. Catal. B: Environ. 36 (2002) 19–29.Search in Google Scholar

173. Lin, J.N. and B.Z. Wan: Effects of preparation conditions on gold/Y-type zeolite for CO oxidation; Appl. Catal. B: Environ. 41 (2003) 83–95.Search in Google Scholar

174. Bulushev, D.A., L. Kiwi-Minsker, I. Yuranov, E.I. Suvurova, P.A. Buffat, and A. Renken: Structured Au/FeOx/C catalysts for low-temperature CO oxidation; J. Catal. 210 (2002) 149–159.Search in Google Scholar

175. Wolf, A. and F. Schuth: A systematic study of the synthesis conditions for the preparation of highly active gold catalysts; Appl. Catal. A: Gen. 226 (2002) 1–13.Search in Google Scholar

176. Schimpf, S., M. Lucas, C. Mohr, U. Rodemerck, A. Bruckner, J. Radnik, H. Hofmeister, and P. Claus: Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogenation and oxidation reactions; Catal. Today 72 (2002) 63–78.Search in Google Scholar

177. Ivanova, S., V. Pitchon, C. Petit, H. Herschbach, A. Van Dosselaer, and R. Leize: Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and specification by mass-spectrometry; Appl. Catal. A: Gen. 298 (2006) 203–210.Search in Google Scholar

178. Gluhoi, A.C., N. Bogdanchikova, and B.E. Nieuwen-huys: The effect of different types of additives on the catalytic activity of Au/Al2O3 in propane total oxidation: transition metal oxides and ceria. J. Catal. 229 (2005) 154–162.Search in Google Scholar

179. Moran-Pineda, M., S. Castillo, and R. Gomez: Low-temperature CO oxidation on Au/TiO2 sol-gel cata-lysts; React. Kinet. Catal. Lett. 76 (2002) 375–381.Search in Google Scholar

180. Fan, L., N. Ichikuni, S. Shimazu, and T. Uematsu: Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation; Appl. Catal. A: Gen. 246 (2003) 87–95.Search in Google Scholar

181. Mallick, K., M.J. Witcomb, and M.S. Scurrel: Simplified single-step route for the preparation of a highly active gold-based catalyst for CO oxidation; J. Molec. Catal. A: Chem. 215 (2004) 103–106.Search in Google Scholar

182. Lin, C.H., S.H. Hsu, M.Y. Lee, and S.D. Lin: Active morphology of Pt/(-Al2O3 – A model by EXAFS; J. Catal. 209 (2002) 62–68.Search in Google Scholar

183. Wang, G.Y., H.L. Lian, W.X. Zhang, D.Z. Jiang, and T.H. Wu: Stability and deactivation of Au/Fe2O3 catalysts for CO oxidation at ambient temperature and moisture; Kinet. Catal. 43 (2002) 433–442.Search in Google Scholar

184. Li, W.C., M. Comitti, and F. Schuth: Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidation by deposition-precipitation or impregnation; J. Catal. 237 (2005) 190–196.Search in Google Scholar

185. Hodge, N.A., C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q.A., Pankhurst, F.E. Wagner, R.R. Rajaram, and S.E. Golunski: Micro-structural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation; Catal. Today 72 (2002) 133–144.Search in Google Scholar

186. Hutchings, G.J., M.R.H. Siddiqui, A. Burrows, C.J. Kiely, and R. Whyman: High activity Au/CuO-ZnO catalysis for the oxidation of carbon monoxide at ambient temperature; J. Chem. Soc., Faraday Trans. 93 (1997) 187.Search in Google Scholar

187. Carrey, J., J.L. Maurice, F. Petroff, and A. Vaurnes: Growth of Au clusters on amorphous Al2O3: are small clusters more mobile than atoms? Surf. Sci. 505 (2002) 75–82.Search in Google Scholar

188. Tai, Y., J. Marakami, K. Tajiri, F. Ohashi, M. Date, and S. Tsubota: Oxidation of carbon monoxide on Au nanoparticles in titania and titania-coated silica aerogels; Appl. Catal. A: Gen. 268 (2004) 183–187.Search in Google Scholar

189. Alexander, B.D., P.D. Boyle, B.J. Johnson, A.L. Casalnuovo, S.M Johnson., A.M. Mueting, and L.H. Pignolet: Mixed-metal gold phosphine cluster com-plexes and their reactivity toward triphenylphosphine; Inorg. Chem. 26 (1987) 2547–2551.Search in Google Scholar

190. Olea, M. and Y. Iwasawa: Transient studies of carbon monoxide oxidation over supported gold catalysts; Appl. Catal. A: Gen. 275 (2004) 35-42.Search in Google Scholar

191. Choudhary, T.V., C. Sivadinarayana, C.C. Chusuei, A. K. Datye, J.P. Fackler, and D.W. Goodman, Jr.: CO oxidation on supported nano-Au catalysts synthesized from a [Au6(PPh3)6](BF4)2 complex; J. Catal. 207 (2002) 247-255.Search in Google Scholar

192. Augustine, R.K. and S. Tanielyan: Mixed transition metal oxide catalysts for conversion of carbon mon-oxide and method for producing the catalyst; US Patent 5258340, 1993.Search in Google Scholar

eISSN:
1612-9237
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
General Interest, Life Sciences, other, Physics