Acceso abierto

Phytochemical analysis and evaluation of antibacterial activity of Moringa oleifera extracts against gram-negative bacteria: an in vitro and molecular docking studies


Cite

1. Abbas HA, Shaldam MA. Glyceryl trinitrate is a novel inhibitor of quorum sensing in Pseudomonas aeruginosa. Afr Health Sci. 2016; 16(4):1109-17.10.4314/ahs.v16i4.29 Search in Google Scholar

2. Okorondu S, Akujobi C, Okorondu J, Anyado-Nwadike S. Antimicrobial activity of the leaf extracts of Moringa oleifera and Jatropha curcas on pathogenic bacteria. Int J Biol Chem Sci. 2013;7(1): 195-202.10.4314/ijbcs.v7i1. Search in Google Scholar

3. Kilany M. Inhibition of human pathogenic bacteria by Moringa oleifera cultivated in Jazan (Kingdom of Saudi Arabia) and study of synergy to amoxicillin. Egypt Pharm J. 2016;15(1):38.10.4103/1687-4315.184029 Search in Google Scholar

4. Mursyid M, Annisa R, Zahran I, Langkong J, Kamaruddin I. Antimicrobial activity of moringa leaf (Moringa oleifera L.) extract against the growth of Staphylococcus epidermidis. IOP Conference Series: Earth and Environmental Science; 2019: IOP Publishing. Search in Google Scholar

5. Amabye TG, Tadesse FM. Phytochemical and antibacterial activity of moringa oleifera available in the market of Mekelle. JAPLR. 2016; 2(1):1-4.10.15406/japlr.2016.02.00011 Search in Google Scholar

6. Abd Rani NZ, Husain K, Kumolosasi E. Moringa genus: a review of phytochemistry and pharmacology. Front Pharmacol. 2018;9:108.10.3389/fphar.2018.00108582033429503616 Search in Google Scholar

7. Leone A, Fiorillo G, Criscuoli F, Ravasenghi S, Santagostini L, Fico G, et al. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi Refugee Camps, and Haiti. Int J Mol Sci. 2015;16(8):18923-37.10.3390/ijms160818923458127926274956 Search in Google Scholar

8. Saini RK, Sivanesan I, Keum Y-S. Phytochemicals of Moringa oleifera: a review of their nutritional, therapeutic and industrial significance. 3 Biotech. 2016;6(2):1-14.10.1007/s13205-016-0526-3503377528330275 Search in Google Scholar

9. Maiyo FC, Moodley R, Singh M. Cytotoxicity, antioxidant and apoptosis studies of quercetin-3-O glucoside and 4-(β-D-glucopyranosyl-1→ 4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate from Moringa oleifera. Anti-Cancer Agents in Medicinal Chemistry. 2016;16(5):648-56.10.2174/187152061566615100211042426428271 Search in Google Scholar

10. Vergara-Jimenez M, Almatrafi MM, Fernandez ML. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants. 2017;6(4):91.10.3390/antiox6040091574550129144438 Search in Google Scholar

11. Gismondi A, Canuti L, Impei S, Di Marco G, Kenzo M, Colizzi V, et al. Antioxidant extracts of African medicinal plants induce cell cycle arrest and differentiation in B16F10 melanoma cells. Int J Oncol. 2013;43(3):956-64.10.3892/ijo.2013.200123817892 Search in Google Scholar

12. Arama P, Atieno W, Wagai S, Ogur J. Antibacterial activity of Moringa oleifera and Moringa stenopetala methanol and n-hexane seed extracts on bacteria implicated in water borne diseases. Afr J Microbiol Res. 2011;5(2):153-7. Search in Google Scholar

13. Tuorkey MJ. Effects of Moringa oleifera aqueous leaf extract in alloxan induced diabetic mice. Interv Med Appl Sci. 2016;8(3):109-17.10.1556/1646.8.2016.3.7 Search in Google Scholar

14. Isitua C, Ibeh I, Olayinka J. Antibacterial activity of Moringa oleifera Lamk. Leaves on enteric human pathogens. Indian J Appl Res. 2016;6(9):553-6. Search in Google Scholar

15. Bancessi A, Pinto MMF, Duarte E, Catarino L, Nazareth T. The antimicrobial properties of Moringa oleifera Lam. for water treatment: a systematic review. SN Appl Sci. 2020;2(3):1-9.10.1007/s42452-020-2142-4 Search in Google Scholar

16. Singh BR, Shoeb M, Sharma S, Naqvi A, Gupta VK, Singh BN. Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol. 2017;7:93.10.3389/fcimb.2017.00093536292728386534 Search in Google Scholar

17. Malathi K, Anbarasu A, Ramaiah S. Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: a molecular docking and dynamics study. J Biomol Struct Dyn. 2019;37(17): 4601-13.10.1080/07391102.2018.155673730632921 Search in Google Scholar

18. Oefner C, Schulz H, D’Arcy A, Dale GE. Mapping the active site of Escherichia coli malonyl-CoA-acyl carrier protein transacylase (FabD) by protein crystallography. Acta Crystallogr Section D: Biol Crystallogr. 2006;62(6):613-8.10.1107/S090744490600947416699188 Search in Google Scholar

19. Alupului A, Calinescu I, Lavric V, editors. Ultrasonic vs. microwave extraction intensification of active principles from medicinal plants. AIDIC Conference Series. 2009;9:1-8. Search in Google Scholar

20. Adham AN, Naqishbandi AM. HPLC analysis and antidiabetic effect of Rheum ribes root in type 2 diabetic patients. Zanco J Med Sci. 2015;19(2): 957-64.10.15218/zjms.2015.0017 Search in Google Scholar

21. Banso A, Adeyemo S. Phytochemical screening and antimicrobial assessment of Abutilon mauritianum, Bacopa monnifera and Datura stramonium. Biokemistri. 2006;18(1).10.4314/biokem.v18i1.56390 Search in Google Scholar

22. Ayoola G, Coker H, Adesegun S, Adepoju-Bello A, Obaweya K, Ezennia EC, et al. Phytochemical screening and antioxidant activities of some selected medicinal plants used for malaria therapy in Southwestern Nigeria. Tropical J Pharmaceutical Res. 2008;7(3):1019-24.10.4314/tjpr.v7i3.14686 Search in Google Scholar

23. Adham AN. Comparative extraction methods, fluorescence, qualitative and quantitative evaluation of Ammi majus seed extracts. J Pharmacogn Phytochem. 2015;4(1):41-4. Search in Google Scholar

24. Al_husnan LA, Alkahtani MD. Impact of Moringa aqueous extract on pathogenic bacteria and fungi in vitro. Ann Agri Sci. 2016;61(2): 247-50.10.1016/j.aoas.2016.06.003 Search in Google Scholar

25. Bottomley MJ, Muraglia E, Bazzo R, Carfì A. Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem. 2007;282(18):13592-600.10.1074/jbc.M70055620017363368 Search in Google Scholar

26. Biovia DS. Discovery studio visualizer. San Diego; 2017:936. Search in Google Scholar

27. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Computational Chem. 2010; 31(2):455-61.10.1002/jcc.21334 Search in Google Scholar

28. Brehan A. Phytochemical and antibacterial activity of the Pods and Leaves extracts of Moringa stenopetala and Docking studies of stigmasterol. ASTU; 2018. Search in Google Scholar

29. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminformatics. 2011;3(1):1-14.10.1186/1758-2946-3-33319895021982300 Search in Google Scholar

30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Computational Chem. 2004;25(13):1605-12.10.1002/jcc.2008415264254 Search in Google Scholar

31. Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol. 2019;10:911.10.3389/fmicb.2019.00911652955431156565 Search in Google Scholar

32. Idowu K. Compositional investigation of phytochemical and antioxidant properties of various parts of moringa oleifera plant’. Eur J Basic Appl Sci. 2015;2(2):1-11. Search in Google Scholar

33. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Human Wellness. 2016;5(2):49-56.10.1016/j.fshw.2016.04.001 Search in Google Scholar

34. Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. Phytother Res. 2019;33(1):13-40.10.1002/ptr.620830346068 Search in Google Scholar

35. Njinga N, Sule M, Pateh U, Hassan H, Abdullahi S, Ache R. Isolation and antimicrobial activity of β-sitosterol-3-O-glucoside from Lannea Kerstingii Engl. & K. Krause (Anacardiacea). JHAS. 2016;6(01):4-8. Search in Google Scholar

36. Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem. 2016;2016: 6304163.10.1155/2016/6304163474560226904285 Search in Google Scholar

37. Lou Z, Wang H, Zhu S, Ma C, Wang Z. Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci. 2011;76(6): M398-M403.10.1111/j.1750-3841.2011.02213.x22417510 Search in Google Scholar

38. Abdalla AM, Alwasilah HY, Mahjoub RAH, Mohammed HI, Yagoub M. Evaluation of antimicrobial activity of Moringa oleifera leaf extracts against pathogenic bacteria isolated from urinary tract infected patients. J Adv Lab Res Biol. 2016;7(2):47-51. Search in Google Scholar

39. Radovanović A. Evaluation of potential cytotoxic effects of herbal extracts. Serb J Exp Clin Res. 2015;16(4):333-42.10.1515/sjecr-2015-0041 Search in Google Scholar

eISSN:
2300-6676
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other, Pharmacology, Toxicology, Pharmacy