Cite

1. M. Dashti and A. M. Stuart, The Bayesian Approach to Inverse Problems, pp. 311–424. Springer International Publishing, 2016.10.1007/978-3-319-12385-1_7 Search in Google Scholar

2. J. O. Berger, Statistical Decision Theory and Bayesian Analysis. Springer, 2nd ed., 1985.10.1007/978-1-4757-4286-2 Search in Google Scholar

3. M. Burger and F. Lucka, Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators, Inverse Problems, vol. 30, p. 114004, 2014.10.1088/0266-5611/30/11/114004 Search in Google Scholar

4. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of inverse problems, vol. 375. Springer Science and Business Media, 1996.10.1007/978-94-009-1740-8 Search in Google Scholar

5. J. Carrillo, F. Hoffmann, A. Stuart, and U. Vaes, Consensus-based sampling, Studies in Applied Mathematics, vol. 148, no. 3, pp. 1069–1140, 2022.10.1111/sapm.12470 Search in Google Scholar

6. M. Iglesias, K. Law, and A. M. Stuart, Ensemble Kalman methods for inverse problems, Inverse Probl., vol. 29, no. 4, p. 045001, 2013.10.1088/0266-5611/29/4/045001 Search in Google Scholar

7. N. K. Chada, C. Schillings, and S. Weissmann, On the incorporation of box-constraints for ensemble Kalman inversion, Foundations of Data Science, vol. 1, no. 2639-8001_2019_4_433, p. 433, 2019.10.3934/fods.2019018 Search in Google Scholar

8. M. Herty and G. Visconti, Continuous limits for constrained ensemble Kalman filter, Inverse Probl., 2020.10.1088/1361-6420/ab8bc5 Search in Google Scholar

9. D. J. Albers, P.-A. Blancquart, M. E. Levine, E. E. Seylabi, and A. M. Stuart, Ensemble Kalman methods with constraints, Inverse Probl., vol. 35, no. 9, p. 095007, 2019.10.1088/1361-6420/ab1c09 Search in Google Scholar

10. K. Bergemann and S. Reich, An ensemble Kalman-Bucy filter for continuous data assimilation, Meteorologische Zeitschrift, vol. 21, no. 3, pp. 213–219, 2012.10.1127/0941-2948/2012/0307 Search in Google Scholar

11. Y. Chen and D. S. Oliver, Parameterization techniques to improve mass conservation and data assimilation for ensemble Kalman filter, 2010.10.2118/133560-MS Search in Google Scholar

12. A. A. Emerick and A. C. Reynolds, Ensemble smoother with multiple data assimilation, Computers and Geosciences, vol. 55, pp. 3–15, 2013.10.1016/j.cageo.2012.03.011 Search in Google Scholar

13. G. Evensen, Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res, vol. 99, pp. 10143–10162, 1994.10.1029/94JC00572 Search in Google Scholar

14. G. Evensen and P. J. Van Leeuwen, Assimilation of geosat altimeter data for the agulhas current using the ensemble Kalman filter with a quasi-geostrophic model, Monthly Weather, vol. 128, pp. 85–96, 1996.10.1175/1520-0493(1996)124<0085:AOGADF>2.0.CO;2 Search in Google Scholar

15. S. I. Aanonsen, G. Naevdal, D. S. Oliver, A. C. Reynolds, and B. Valles, The ensemble Kalman filter in reservoir engineering–a review, SPE J., vol. 14, no. 3, pp. 393–412, 2009.10.2118/117274-PA Search in Google Scholar

16. T. Janjić, D. McLaughlin, S. E. Cohn, and M. Verlaan, Conservation of mass and preservation of positivity with ensemble-type Kalman filter algorithms, Monthly Weather Review, vol. 142, no. 2, pp. 755–773, 2014.10.1175/MWR-D-13-00056.1 Search in Google Scholar

17. M. Schwenzer, G. Visconti, M. Ay, T. Bergs, M. Herty, and D. Abel, Identifying trending coefficients with an ensemble Kalman filter, IFAC-PapersOnLine, vol. 53, no. 2, pp. 2292–2298, 2020.10.1016/j.ifacol.2020.12.1490 Search in Google Scholar

18. B. O. S. Teixeira, L. A. B. Târres, L. A. Aguirre, and D. S. Bernstein, On unscented Kalman filtering with state interval constraints, J. Process Contr., vol. 20, no. 1, pp. 45–57, 2010.10.1016/j.jprocont.2009.10.007 Search in Google Scholar

19. J. Keller, H.-J. Franssen, and W. Nowak, Investigating the pilot point ensemble kalman filter for geostatistical inversion and data assimilation, Adv. Water Resour., vol. 155, 2021.10.1016/j.advwatres.2021.104010 Search in Google Scholar

20. J. B. Muir and V. C. Tsai, Geometric and level set tomography using ensemble Kalman inversion, Geophysical Journal International, vol. 220, no. 2, pp. 967–980, 2019.10.1093/gji/ggz472 Search in Google Scholar

21. C.-H. M. Tso, M. Iglesias, P. Wilkinson, O. Kuras, J. Chambers, and A. Binley, Efficient multiscale imaging of subsurface resistivity with uncertainty quantification using ensemble Kalman inversion, Geophysical Journal International, vol. 225, no. 2, pp. 887–905, 2021.10.1093/gji/ggab013 Search in Google Scholar

22. Z. Li, An iterative ensemble kalman method for an inverse scattering problem in acoustics, Modern Physics Letters B, vol. 34, no. 28, p. 2050312, 2020.10.1142/S0217984920503121 Search in Google Scholar

23. E. Haber, F. Lucka, and L. Ruthotto, Never look back - A modified EnKF method and its application to the training of neural networks without back propagation. Preprint arXiv:1805.08034, 2018. Search in Google Scholar

24. N. B. Kovachki and A. M. Stuart, Ensemble Kalman inversion: a derivative-free technique for machine learning tasks, Inverse Probl., vol. 35, no. 9, p. 095005, 2019.10.1088/1361-6420/ab1c3a Search in Google Scholar

25. A. Yegenoglu, S. Diaz, K. Krajsek, and M. Herty, Ensemble Kalman filter optimizing deep neural networks, in Conference on Machine Learning, Optimization and Data Science, vol. 12514, 2020. Search in Google Scholar

26. O. G. Ernst, B. Sprungk, and H.-J. Starkloff, Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif., vol. 3, no. 1, pp. 823–851, 2015.10.1137/140981319 Search in Google Scholar

27. A. Garbuno-Inigo, F. Hoffmann, W. Li, and A. M. Stuart, Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler, SIAM J. Appl. Dyn. Syst., vol. 19, no. 1, pp. 412–441, 2020.10.1137/19M1251655 Search in Google Scholar

28. A. Apte, M. Hairer, A. M. Stuart, and J. Voss, Sampling the posterior: An approach to non-Gaussian data assimilation, Phys. D, vol. 230, pp. 50–64, 2007.10.1016/j.physd.2006.06.009 Search in Google Scholar

29. F. Le Gland, V. Monbet, and V.-D. Tran, Large sample asymptotics for the ensemble Kalman filter, Research Report RR-7014, INRIA, 2009. Search in Google Scholar

30. D. Bloemker, C. Schillings, and P. Wacker, A strongly convergent numerical scheme from ensemble Kalman inversion, SIAM J. Numer. Anal., vol. 56, no. 4, pp. 2537–2562, 2018.10.1137/17M1132367 Search in Google Scholar

31. D. Bloemker, C. Schillings, P. Wacker, and S. Weissman, Well Posedness and Convergence Analysis of the Ensemble Kalman Inversion, Inverse Probl., vol. 35, no. 8, 2019.10.1088/1361-6420/ab149c Search in Google Scholar

32. N. K. Chada, A. M. Stuart, and X. T. Tong, Tikhonov regularization within ensemble Kalman inversion, SIAM J. Numer. Anal., vol. 58, no. 2, pp. 1263–1294, 2020.10.1137/19M1242331 Search in Google Scholar

33. C. Schillings and A. M. Stuart, Analysis of the Ensamble Kalman Filter for Inverse Problems, SIAM J. Numer. Anal., vol. 55, no. 3, pp. 1264–1290, 2017.10.1137/16M105959X Search in Google Scholar

34. C. Schillings and A. M. Stuart, Convergence analysis of ensemble Kalman inversion: the linear, noisy case, Appl. Anal., vol. 97, no. 1, pp. 107–123, 2018.10.1080/00036811.2017.1386784 Search in Google Scholar

35. J. A. Carrillo and U. Vaes, Wasserstein stability estimates for covariance-preconditioned Fokker-Planck equations, Nonlinearity, vol. 34, no. 4, p. 2275, 2021.10.1088/1361-6544/abbe62 Search in Google Scholar

36. Z. Ding and Q. Li, Ensemble Kalman Inversion: mean-field limit and convergence analysis, Stat. Comput., vol. 31, p. 9, 2021.10.1007/s11222-020-09976-0 Search in Google Scholar

37. M. Herty and G. Visconti, Kinetic methods for inverse problems, Kinet. Relat. Models, vol. 12, no. 5, pp. 1109–1130, 2019.10.3934/krm.2019042 Search in Google Scholar

38. N. K. Chada, Limit analysis of hierarchical ensemble Kalman inversion, J. Inverse Ill-Posed Probl., 2020. In press. Search in Google Scholar

39. Z. Ding, Q. Li, and J. Lu, Ensemble Kalman inversion for nonlinear problems: Weights, consistency, and variance bounds, Found. Data Sci., vol. 3, no. 3, pp. 371–411, 2021.10.3934/fods.2020018 Search in Google Scholar

40. A. Armbruster, M. Herty, and G. Visconti, A stabilization of a continuous limit of the ensemble Kalman inversion, SIAM J. Numer. Anal., 2022. Accepted. Preprint arXiv:2006.15390.10.1137/21M1414000 Search in Google Scholar

41. J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, ch. Particle, kinetic, and hydrodynamic models of swarming, pp. 297–336. Modeling and Simulation in Science, Engineering and Technology, Birkh¨auser Boston, 2010.10.1007/978-0-8176-4946-3_12 Search in Google Scholar

42. F. Golse, On the dynamics of large particle systems in the mean field limit, in Macroscopic and large scale phenomena: coarse graining, mean field limits and ergodicity, pp. 1–144, Springer, 2016.10.1007/978-3-319-26883-5_1 Search in Google Scholar

43. P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinetic & Related Models, vol. 7, no. 4, pp. 661–711, 2014.10.3934/krm.2014.7.661 Search in Google Scholar

44. L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic equations and Monte Carlo methods. Oxford University Press, 2013. Search in Google Scholar

45. G. Albi and L. Pareschi, Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., vol. 11, no. 1, pp. 1–29, 2013.10.1137/120868748 Search in Google Scholar

46. M. Ehrgott, Multicriteria optimization, vol. 491. Springer Science & Business Media, 2005. Search in Google Scholar

47. K. Miettinen, Nonlinear multiobjective optimization, vol. 12. Springer Science & Business Media, 2012. Search in Google Scholar

48. P. M. Pardalos, A.Žilinskas, J.Žilinskas, et al., Non-convex multi-objective optimization. Springer, 2017.10.1007/978-3-319-61007-8 Search in Google Scholar

49. M. Herty and E. Iacomini, Filtering methods for coupled inverse problems. Preprint. arXiv:2203.09841, 2022. Search in Google Scholar

50. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182–197, 2002.10.1109/4235.996017 Search in Google Scholar

eISSN:
2038-0909
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Mathematics, Numerical and Computational Mathematics, Applied Mathematics