Cite

1. Adachi D., Nishiguchi S., Fukutani N., Hotta T., Tashiro Y., Morino S., Shirooka H., Nozaki Y., Hirata H., Yamaguchi M., Yorozu A., Takahashi M., Aoyama T. (2017) Generating linear regression model to predict motor functions by use of laser range finder during TUG. J. Orthop. Sci., 22(3): 549-53. DOI: 10.1016/j.jos.2017.01.020.10.1016/j.jos.2017.01.02028254157 Search in Google Scholar

2. Baker R. Measuring walking. 1st ed. Hart HM, ed. London: Mac Keith Press; 2013. Search in Google Scholar

3. Bonnyaud C., Pradon D., Vuillerme N., Bensmail D., Roche N. (2015) Spatiotemporal and kinematic parameters relating to oriented gait and turn performance in patients with chronic stroke. PLoS One, 10(6): e0129821. DOI: 10.1371/journal.pone.0129821.10.1371/journal.pone.0129821447488526091555 Search in Google Scholar

4. Bonnyaud C., Pradon D., Zory R., Bensmail D., Vuillerme N., Roche N. (2015) Gait parameters predicted by timed up and go performance in stroke patients. NeuroRehabilitation, 36(1): 73-80. DOI: 10.3233/NRE-141194.10.3233/NRE-14119425547769 Search in Google Scholar

5. Bowen M.E., Crenshaw J., Stanhope S.J. (2018) Balance ability and cognitive impairment influence sustained walking in an assisted living facility. Arch. Gerontol. Geriatr., 77: 133-141. DOI: 10.1016/j.archger.2018.05.004.10.1016/j.archger.2018.05.00429753298 Search in Google Scholar

6. Canseco K., Kruger K.M., Fritz J.M., Konop K.A., Tarima S., Marks R.M., Harris G.F. (2018) Distribution of segmental foot kinematics in patients with degenerative joint disease of the ankle. J. Orthop. Res., 36(6): 1739-1746. DOI: 10.1002/jor.23807.10.1002/jor.2380729139570 Search in Google Scholar

7. Chan Y.H., (2003) Biostatistics 104: correlational analysis. Singapore Med. J., 44(12): 614-619. Search in Google Scholar

8. Cruz-Jimenez M. (2017) Normal Changes in Gait and Mobility Problems in the Elderly. Phys. Med. Rehabil. Clin. N. Am., 28(4): 713-725. DOI: 10.1016/j.pmr.2017.06.005.10.1016/j.pmr.2017.06.00529031338 Search in Google Scholar

9. Edwards M.H., Jameson K., Denison H., Harvey N.C., Aihie Sayer A., Dennison E.M., Cooper C. (2013) Clinical risk factors, bone density and fall history in the prediction of incident fracture among men and women. Bone, 52(2): 541-547. DOI: 10.1016/j.bone.2012.11.006.10.1016/j.bone.2012.11.006365462823159464 Search in Google Scholar

10. Garcia-Pinillos F., Cozar-Barba M., Munoz-Jimenez M., Soto-Hermoso V., Latorre-Roman P. (2016) Gait speed in older people: an easy test for detecting cognitive impairment, functional independence, and health state. Psycho-geriatrics, 16(3):165-71. DOI: 10.1111/psyg.12133.10.1111/psyg.1213326114989 Search in Google Scholar

11. Gor-García-Fogeda M.D., Cano de la Cuerda R., Carratalá Tejada M., Alguacil-Diego I.M., Molina-Rueda F. (2016) Observational gait assessments in people with neurological disorders: a systematic review. Arch. Phys. Med. Rehabil., 97(1): 131-140. DOI: 10.1016/j. apmr.2015.07.018. Search in Google Scholar

12. Hedman A-M.R., Fonad E., Sandmark H. (2013) Older people living at home: associations between falls and health complaints in men and women. J. Clin. Nurs., 22(19-20): 2945-2952. DOI: 10.1111/jocn.12279.10.1111/jocn.1227923829490 Search in Google Scholar

13. Herssens N., Verbecque E., Hallemans A., Vereeck L., Van Rompaey V., Saeys W. (2018) Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture, 64: 181-190. DOI: 10.1016/j.gaitpost.2018.06.012.10.1016/j.gaitpost.2018.06.01229929161 Search in Google Scholar

14. Johansson J., Nordström A., Nordström P. (2016) Greater fall risk in elderly women than in men is associated with increased gait variability during multitasking. J. Am. Med. Dir. Assoc., 17(6): 535-540. DOI: 10.1016/j. jamda.2016.02.009. Search in Google Scholar

15. Kegelmeyer D.A., Kloos A.D., Thomas K.M., Kostyk S.K. (2007) Reliability and validity of the Tinetti Mobility Test for individuals with Parkinson disease. Phys. Ther., 87(10): 1369-1378. DOI: 10.2522/ptj.20070007.10.2522/ptj.2007000717684089 Search in Google Scholar

16. Kluger B.M., Brown R.P., Aerts S., Schenkman M. (2014) Determinants of objectively measured physical functional performance in early to mid-stage Parkinson disease. PM R. 6(11): 992-998. DOI: 10.1016/j. pmrj.2014.05.013. Search in Google Scholar

17. Kyrdalen I.L., Thingstad P., Sandvik L., Ormstad H. (2019) Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physi-other. Res. Int., 24(1): e1743. DOI: 10.1002/pri.1743.10.1002/pri.174330198603 Search in Google Scholar

18. Levine D., Richards J., Whittle M.W. (2012) Basic sciences. En: Whittle’s gait analysis. 5th ed. Edinburgh: Churchill Livingstone. Search in Google Scholar

19. Levine D., Richards J., Whittle M.W. (2012) Whittle’s gait analysis. Elsevier Health Sciences. Search in Google Scholar

20. Lord S.R., Murray S.M., Chapman K., Munro B., Tiedemann A. (2002) Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. A Biol. Sci. Med. Sci., 57(8): M539-543. DOI: 10.1093/gerona/57.8.m539.10.1093/gerona/57.8.M53912145369 Search in Google Scholar

21. MacRae P.G., Schnelle J.F., Simmons S.F., Ouslander J.G. (1996) Physical activity levels of ambulatory nursing home residents. J. Aging Phys. Act., 4(3):264-278. DOI: 10.1123/japa.4.3.264.10.1123/japa.4.3.264 Search in Google Scholar

22. Maggio M., Ceda G.P., Ticinesi A., De Vita F., Gelmini G., Costantino C., Meschi T., Kressig R.W., Cesari M., Fabi M., Lauretani F. (2016) Instrumental and non-instrumental evaluation of 4-meter walking speed in older individuals. PLoS One, 11(4): e0153583. DOI: 10.1371/journal.pone.0153583.10.1371/journal.pone.0153583483172727077744 Search in Google Scholar

23. Mikos V., Yen S-C., Tay A., et al. (2018) Regression analysis of gait parameters and mobility measures in a healthy cohort for subject-specific normative values. PLoS One, 13(6): e0199215. DOI: 10.1371/journal.pone.0199215.10.1371/journal.pone.0199215600548629912992 Search in Google Scholar

24. Mong Y., Teo T.W., Ng S.S. (2010) 5-repetition sit-to-stand test in subjects with chronic stroke: reliability and validity. Arch. Phys. Med. Rehabil., 91(3): 407-413. DOI: 10.1016/j.apmr.2009.10.030.10.1016/j.apmr.2009.10.03020298832 Search in Google Scholar

25. Muraki S., Akune T., Oka H., Ishimoto Y., Nagata K., Yoshida M., Tokimura F., Nakamura K., Kawaguchi H., Yoshimura N. (2013) Physical performance, bone and joint diseases, and incidence of falls in Japanese men and women: a longitudinal cohort study. Osteoporos Int., 24(2): 459-466. DOI: 10.1007/s00198-012-1967-0.10.1007/s00198-012-1967-022434204 Search in Google Scholar

26. Park Y.S., Kim J.W., Kwon Y., Kwon M.S. (2018) Effect of age and sex on gait characteristics in the korean elderly people. Iran J. Public Health, 47(5): 666-673. Search in Google Scholar

27. Podsiadlo D., Richardson S. (1991) The timed «Up & Go»: a test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc., 39(2): 142-148.10.1111/j.1532-5415.1991.tb01616.x1991946 Search in Google Scholar

28. Shumway-Cook A., Brauer S., Woollacott M. (2000) Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther., 80(9): 896-903. DOI: 10.1093/ptj/80.9.896.10.1093/ptj/80.9.896 Search in Google Scholar

29. Spagnuolo D.L., Jürgensen S.P., Iwama A.M., Dourado V.Z. (2010) Walking for the assessment of balance in healthy subjects older than 40 years. Gerontology, 56(5): 467-473. DOI: 10.1159/000275686.10.1159/000275686 Search in Google Scholar

30. Steffen T.M., Hacker T.A., Mollinger L. (2002) Age- and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther., 82(2): 128-137. DOI: 10.1093/ptj/82.2.128.10.1093/ptj/82.2.128 Search in Google Scholar

31. Subsecretaria de Salud Pública de Chile. Manual de aplicación del axamen de medicina preventiva del adulto mayor.; 2010. Disponible en: http://www.minsal.cl/portal/url/item/ab1f81f43ef0c2a6e04001011e011907.pdf. Search in Google Scholar

32. Tang P-F., Woollacott M.H. (1996) Balance control in older adults: training effects on balance control and the integration of balance control into walking. Adv. Psychol., 114(C): 339-367. DOI: 10.1016/S0166-4115(96)80015-X.10.1016/S0166-4115(96)80015-X Search in Google Scholar

33. Tao W., Liu T., Zheng R., Feng H. (2012) Gait analysis using wearable sensors. Sensors (Basel). 12(2): 2255-2283. DOI: 10.3390/s120202255.10.3390/s120202255330416522438763 Search in Google Scholar

34. Thapa P.B., Gideon P., Fought R.L., Kormicki M., Ray W.A. (1994) Comparison of clinical and biomechanical measures of balance and mobility in elderly nursing home residents. J. Am. Geriatr. Soc., 42(5): 493-500. DOI: 10.1111/j.1532-5415.1994.tb04970.x.10.1111/j.1532-5415.1994.tb04970.x8176143 Search in Google Scholar

35. Whitney S.L., Wrisley D.M., Marchetti G.F., Gee M.A., Redfern M.S., Furman J.M. (2005) Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther., 85(10): 1034-1045. DOI: 10.1093/ptj/85.10.1034.10.1093/ptj/85.10.1034 Search in Google Scholar

36. Yelnik A., Bonan I. (2008) Clinical tools for assessing balance disorders. Neurophysiol. Clin., 38(6): 439-445. DOI: 10.1016/j.neucli.2008.09.008.10.1016/j.neucli.2008.09.00819026963 Search in Google Scholar

eISSN:
2080-2234
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education