1. bookVolumen 29 (2021): Edición 3 (November 2021)
Detalles de la revista
Primera edición
17 May 2013
Calendario de la edición
1 tiempo por año
access type Acceso abierto

On the Complex and Chaotic Dynamics of Standard Logistic Sine Square Map

Publicado en línea: 23 Nov 2021
Volumen & Edición: Volumen 29 (2021) - Edición 3 (November 2021)
Páginas: 201 - 227
Recibido: 08 Jan 2021
Aceptado: 19 Feb 2021
Detalles de la revista
Primera edición
17 May 2013
Calendario de la edición
1 tiempo por año

In this article, we set up a new nonlinear dynamical system which is derived by combining logistic map and sine square map in Mann orbit (a two step feedback process) for ameliorating the stability performance of chaotic system and name it Standard Logistic Sine Square Map (SLSSM). The purpose of this paper is to study the whole dynamical behavior of the proposed map (SLSSM) through various introduced aspects consisting fixed point and stability analysis, time series representation, bifurcation diagram and Lyapunov exponent. Moreover, we show that our map is significantly superior than existing other one dimensional maps. We investigate that the chaotic and complex behavior of SLSSM can be controlled by selecting control parameters carefully. Also, the range of convergence and stability can be made to increase drastically. This new system (SLSSM) might be used to achieve better results in cryptography and to study chaos synchronization.


MSC 2010

[1] A. Hastings, C.L. Hom, S. Ellner, P. Turchin, H.C.J. Godfray, Chaos in Ecology: Is Mother Nature a Strange Attractor?, Annu. Rev. Ecol. Syst. 24 (1993), 1–33.10.1146/annurev.es.24.110193.000245 Search in Google Scholar

[2] D. Rickles, P. Hawe, A. Shiell, A Simple Guide to Chaos and Complexity, J. Epidemiol. Commun. Health. 61 (2007), 933–937.10.1136/jech.2006.054254246560217933949 Search in Google Scholar

[3] M. Berezowski, M. Lawnik, Identification of fast-changing signals by means of adaptive chaotic transformations, Nonlinear Anal. Model. Control, 19 (2014), 172–177.10.15388/NA.2014.2.2 Search in Google Scholar

[4] M. Lawnik, M. Berezowski, Identification of the oscillation period of chemical reactors by chaotic sampling of the conversion degree, Chem. Process Eng. 35 (2014), 387–393.10.2478/cpe-2014-0029 Search in Google Scholar

[5] M. Lawnik, Generation of numbers with the distribution close to uniform with the use of chaotic maps, Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, (2014), 451–455.10.5220/0005090304510455 Search in Google Scholar

[6] S. Kumari, R. Chugh, J. Cao, C. Huang, On the construction, properties and Hausdorff dimension of random Cantor one pth set, AIMS Mathematics, 5 (2020), 3138–3155.10.3934/math.2020202 Search in Google Scholar

[7] S. Kumari, R. Chugh, J. Cao, C. Huang, Multi Fractals of Generalized Multivalued Iterated Function Systems in b-Metric Spaces with Applications, Mathematics 7 (2019), 967.10.3390/math7100967 Search in Google Scholar

[8] S. Kumari, R. Chugh, Novel fractals of Hutchinson Barnsley operator in Hausdorff g-metric spaces, Poincare Journal of Analysis & Applications, 7 (2020), 99–117.10.46753/pjaa.2020.v07i01.010 Search in Google Scholar

[9] S. Kumari, M. Kumari, R. Chugh, Dynamics of superior fractals via Jungck SP orbit with s-convexity, Annals of the University of Craiova-Mathematics and Computer Science Series, 46(2), 2019, 344–365. Search in Google Scholar

[10] S. Kumari, M. Kumari, R. Chugh, Graphics for complex polynomials in Jungck-SP orbit, IAENG International Journal of Applied Mathematics, 49 (2019), 568–576. Search in Google Scholar

[11] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Westview Press, USA 2003. Search in Google Scholar

[12] K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos : An Introduction to Dynamical Systems, Springer, New York 1996.10.1007/b97589 Search in Google Scholar

[13] R.A. Holmgren, A first course in discrete dynamical systems, Springer-Verlag; 1994.10.1007/978-1-4684-0222-3 Search in Google Scholar

[14] R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459–475.10.1038/261459a0934280 Search in Google Scholar

[15] S. Kumar, M. Kumar, R. Budhiraja, M.K. Das, S. Singh, A secured cryptographic model using intertwining logistic map, Procedia Computer Science, 143 (2018), 804–811.10.1016/j.procs.2018.10.386 Search in Google Scholar

[16] C. Han, An image encryption algorithm based on modified logistic chaotic map, Optik, 181 (2019), 779-785.10.1016/j.ijleo.2018.12.178 Search in Google Scholar

[17] Z. Hua, Y. Zhou, Image encryption using 2D Logistic-adjusted-Sine map, Inf. Sci. 339 (2016), 237–253.10.1016/j.ins.2016.01.017 Search in Google Scholar

[18] L.P.L. de Oliveira, M. Sobottka, Cryptography with chaotic mixing, Chaos, Solitons & Fractals, 3 (2008), 466–471.10.1016/j.chaos.2006.05.049 Search in Google Scholar

[19] P. Shang, X. Li, S. Kame, Chaotic analysis of traffic time series, Chaos, Solitons & Fractals, 25 (2005), 121–128.10.1016/j.chaos.2004.09.104 Search in Google Scholar

[20] S.C. Lo, H.J. Cho, Chaos and control of discrete dynamic traffic model, J. Franklin Inst. 342 (2005), 839–851.10.1016/j.jfranklin.2005.06.002 Search in Google Scholar

[21] M. McCartney, A discrete time car following model and the bi-parameter logistic map, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 233–243.10.1016/j.cnsns.2007.06.012 Search in Google Scholar

[22] Ashish, J. Cao, R. Chugh, Chaotic behavior of logistic map in superior orbit and an improved chaos-based traffic control model, Nonlinear Dynamics, 2018, 1–17. https://doi.org/10.1007/s11071-018-4403-y.10.1007/s11071-018-4403-y Search in Google Scholar

[23] T. Nagatani, Vehicular motion through a sequence of traffic lights controlled by logistic map, Physics Letters A, 372 (2008), 5887–5890.10.1016/j.physleta.2008.07.063 Search in Google Scholar

[24] T. Nagatani, N. Sugiyama, Vehicular traffic flow through a series of signals with cycle time generated by a logistic map, Physica A, 392 (2013), 851–856.10.1016/j.physa.2012.10.015 Search in Google Scholar

[25] S. Kumari, R. Chugh, A novel four-step feedback procedure for rapid control of chaotic behavior of the logistic map and unstable traffic on the road, Chaos, 30 (2020), 123115.10.1063/5.0022212 Search in Google Scholar

[26] N. Singh, A. Sinha, Chaos-based secure communication system using logistic map, Opt. Lasers Eng. 48 (2010), 398–404.10.1016/j.optlaseng.2009.10.001 Search in Google Scholar

[27] J.S. Martin, M.A. Porter, Convergence time towards periodic orbits in discrete dynamical systems, PLOS One, 9 (2014), 1–9. Search in Google Scholar

[28] R.V. Medina, A.D. Mendez, J.L. Rio-Correa, J.L. Hernandez, Design of chaotic analog noise generators with logistic map and MOS QT circuits, Chaos, Solitons & Fractals, 40 (2009), 1779–1793.10.1016/j.chaos.2007.09.088 Search in Google Scholar

[29] R. Chugh, A. Kumar, S. Kumari, A novel epidemic model to analyze and control the chaotic behavior of covid-19 outbreak, Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics, 13(2020), 479-508. Search in Google Scholar

[30] F.G. Xie, B.L. Hao, ymbolic Dynamics of the Sine-square Map, Chaos, Solitons & Fractals, 3 (1993), 47-60.10.1016/0960-0779(93)90039-4 Search in Google Scholar

[31] P. Philominathan, P. Neelamegam, S. Rajasekar, Statistical dynamics of sine-square map, Physica A, 242 (1997), 391–408.10.1016/S0378-4371(97)00259-8 Search in Google Scholar

[32] B. Saha, S.T. Malasani, J.B. Seventline, Application of Modified Chaotic Sine Map in Secure Communication, Int. J. Comput. Appl. 113 (2015), 9–14. Search in Google Scholar

[33] H. Ogras, M. Turk, A Secure Chaos-based Image Cryptosystem with an Improved Sine Key Generator, American Journal of Signal Processing, 6 (2016), 67–76. Search in Google Scholar

[34] X. Jie1, C. Pascal, F.P. Daniele, T.A. Kaddous, L. KePing, Chaos generator for secure transmission using a sine map and an RLC series circuit, Science in China Series F: Information Sciences, 53 (2010), 129–136.10.1007/s11431-010-0024-5 Search in Google Scholar

[35] G.C. Wu, D. Baleanu, S.D. Zeng, Discrete chaos in fractional sine and standard maps, Physics Letters A, 378 (2014), 484–487.10.1016/j.physleta.2013.12.010 Search in Google Scholar

[36] Egydio de Carvalho R., Edson D. Leonel: Squared sine logistic map, Physica A, 463 (2016), 37–44.10.1016/j.physa.2016.07.008 Search in Google Scholar

[37] J. Wu, X. Liao, B. Yang, Image Encryption Using 2D Henon-Sine Map and DNA Approach, Signal Process. 153 (2018), 11–23, doi: 10.1016/j.sigpro.2018. Search in Google Scholar

[38] Z. Hua, F. Jin, B. Xu, H. Huang, 2D Logistic-Sine-Coupling Map for Image Encryption, Signal Process. 149 (2018), 148–161, doi: 10.1016/j.sigpro.2018. Search in Google Scholar

[39] W.R. Mann, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953), 506–510.10.1090/S0002-9939-1953-0054846-3 Search in Google Scholar

[40] M. Rani, R. Agarwal, A new experimental approach to study the stability of logistic map, Chaos, Solitons & Fractals, 41 (2009), 2062–2066.10.1016/j.chaos.2008.08.022 Search in Google Scholar

[41] Ashish, J. Cao, A Novel Fixed Point Feedback Approach Studying the Dynamical Behaviors of Standard Logistic Map, Internat. J. Bifur. Chaos 29(2019), 1950010 (16 pages).10.1142/S021812741950010X Search in Google Scholar

[42] J. Fridrich, Image encryption based on chaotic maps, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics(ICSMC‘97), 2(1997), 1105–1110. Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo