1. bookVolumen 29 (2021): Edición 3 (November 2021)
Detalles de la revista
License
Formato
Revista
eISSN
1844-0835
Primera edición
17 May 2013
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
access type Acceso abierto

On numerical solution of nonlinear parabolic multicomponent diffusion-reaction problems

Publicado en línea: 23 Nov 2021
Volumen & Edición: Volumen 29 (2021) - Edición 3 (November 2021)
Páginas: 183 - 200
Recibido: 21 Dec 2020
Aceptado: 12 Apr 2021
Detalles de la revista
License
Formato
Revista
eISSN
1844-0835
Primera edición
17 May 2013
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
Abstract

This work continues our previous analysis concerning the numerical solution of the multi-component mass transfer equations. The present test problems are two-dimensional, parabolic, non-linear, diffusion- reaction equations. An implicit finite difference method was used to discretize the mathematical model equations. The algorithm used to solve the non-linear system resulted for each time step is the modified Picard iteration. The numerical performances of the preconditioned conjugate gradient algorithms (BICGSTAB and GMRES) in solving the linear systems of the modified Picard iteration were analysed in detail. The numerical results obtained show good numerical performances.

Keywords

MSC 2010

[1] J. Bandrowski and A. Kubaczka, On the Prediction of Diffusivities in Multicomponent Liquid Systems, Chem. Eng. Sci., 37, (1982), 13091313.10.1016/0009-2509(82)85003-3 Search in Google Scholar

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, PA, (1994). Search in Google Scholar

[3] Gh. Juncu, A. Nicola, C. Popa, and E. Stroila, Preconditioned Conjugate Gradient and Multi-Grid Methods for Numerical Solution of Multi-Component Mass Transfer Equations. II. Convection - Diffusion Reaction Equations, Numer.Heat Transfer A, 66, (2014), 12971319.10.1080/10407782.2014.915669 Search in Google Scholar

[4] Gh. Juncu, A. Nicola, C. Popa, and E. Stroila, Preconditioned Conjugate Gradient and Multi-Grid Methods for Numerical Solution of Multi-Component Mass Transfer Equations. I. Diffusion Reaction Equations, Numer.Heat Transfer A, 66, (2014), 12681296.10.1080/10407782.2014.915669 Search in Google Scholar

[5] Gh. Juncu, Unsteady Ternary Mass Transfer from a Sphere in Creeping Flow Int. J. Therm. Sci., 44, (2005), 255266.10.1016/j.ijthermalsci.2004.08.003 Search in Google Scholar

[6] Gh. Juncu, A. Nicola, C. Popa, and E. Stroila, Numerical solution of the parabolic multicomponent convection diffusion mass transfer equations by a splitting method, Numer.Heat Transfer A, 71, (2017), 72-90.10.1080/10407782.2016.1257287 Search in Google Scholar

[7] Gh. Juncu, A. Nicola, C. Popa, Splitting methods for the numerical solution of multi-component mass transfer problems Mathematics and Computers in Simulation, 152, (2018), 1-14.10.1016/j.matcom.2018.05.001 Search in Google Scholar

[8] A. Kumar and S. Mazumder, Coupled Solution of the Species Conservation Equations using Unstructured Finite-Volume Method, Int. J. Numer. Methods Fluids, 64, (2010),409442.10.1002/fld.2162 Search in Google Scholar

[9] E. Kozeschnik, Multicomponent Diffusion Simulation Based on Finite Elements, Metall.Mater. Trans. A, 30A, (1999), 25752582.10.1007/s11661-999-0296-1 Search in Google Scholar

[10] A. Leahy-Dios and A. Firoozabadi, Unified Model for Nonideal Multicomponent Molecular Diffusion Coefficients, AIChE J., 53, (2007), 29322939.10.1002/aic.11279 Search in Google Scholar

[11] F. Lehmann and Ph. Ackerer, Comparison of Iterative Methods for Improved Solutions of the Fluid Flow Equation in Partially Saturated Porous Media, Transp. Porous Media, 31, (1998), 275292.10.1023/A:1006555107450 Search in Google Scholar

[12] E. Leonardi and C. Angeli, Transient Diffusion within Spherical Particles: Numerical Resolution of the MaxwellStefan Formulation, Ind. Eng. Chem. Res., 49, (2010), 56545660. Search in Google Scholar

[13] J. C. Maxwell, On the Dynamic Theory of Gases, Philos. Trans. R Soc., 157, (1867), 4988.10.1098/rstl.1867.0004 Search in Google Scholar

[14] S. Mazumder, Critical Assessment of the Stability and Convergence of the Equations of Multi-Component Diffusion, J. Comput. Phys., 212, (2006), 383392.10.1016/j.jcp.2005.07.018 Search in Google Scholar

[15] R.D. Richtmyer and K.W. Morton, Difference Methods for Initial Value Problems, Wiley, New York, (1967). Search in Google Scholar

[16] J. Stefan, Uber das Gleichgewicht und die Bewegung insbesondere die Diffusion von Gasgemengen, Akad. Wiss. Wien, 63, (1871), 63124. Search in Google Scholar

[17] A. Spille-Kohoff, E. Preuss, and K. Bttcher, Numerical Simulation of Multi-Component Species Transport in Gases at Any Total Number of Components, Int. J. Heat Mass Transfer, 55, (2012), 53735377.10.1016/j.ijheatmasstransfer.2012.05.040 Search in Google Scholar

[18] J. M. Stockie, K. Promislow, and B. R. Wetton, A Finite Volume Method for Multicomponent Gas Transport in a Porous Fuel Cell Electrode, Int. J. Numer. Methods Fluids, 41, (2003), 577599.10.1002/fld.453 Search in Google Scholar

[19] R. Taylor and R. Krishna, Multicomponent Mass Transfer, Wiley, New York, (1993). Search in Google Scholar

[20] W. III. Wangard, D. S. Dandy, and B. J. Miller, A Numerically Stable Method for Integration of the Multicomponent Species Diffusion Equations, J. Comput. Phys., 174, (2001), 460472.10.1006/jcph.2001.6930 Search in Google Scholar

[21] R. Weiss, Parameter-Free Iterative Linear Solvers, Akademie, Berlin, (1996). Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo